| 
| template<typename Real >  | 
| void  | RegularizeL1 (CuMatrixBase< Real > *weight, CuMatrixBase< Real > *gradient, Real l1_penalty, Real learning_rate) | 
|   | RegularizeL1 is a gradient step with l1 regularization added to the gradient.  More...
  | 
|   | 
| template<typename Real >  | 
| void  | Randomize (const CuMatrixBase< Real > &src, const CuArray< int32 > ©_from_idx, CuMatrixBase< Real > *tgt) | 
|   | Copies a permutation of src into tgt.  More...
  | 
|   | 
| template<typename Real >  | 
| void  | Splice (const CuMatrixBase< Real > &src, const CuArray< int32 > &frame_offsets, CuMatrixBase< Real > *tgt) | 
|   | Splice concatenates frames of src as specified in frame_offsets into tgt.  More...
  | 
|   | 
| template<typename Real >  | 
| void  | Copy (const CuMatrixBase< Real > &src, const CuArray< int32 > ©_from_indices, CuMatrixBase< Real > *tgt) | 
|   | Copies elements from src into tgt as given by copy_from_indices.  More...
  | 
|   | 
| template<typename Real >  | 
| void  | EnsureNonzero (const CuMatrixBase< Real > &src, Real epsilon, CuMatrixBase< Real > *dest) | 
|   | This function requires that src and dest have the same dimension and epsilon > 0.  More...
  | 
|   | 
| template<typename Real >  | 
| void  | EnsureNonzero (const CuVectorBase< Real > &src, Real epsilon, CuVectorBase< Real > *dest) | 
|   | Vector version of EnsureNonzero, see matrix version for documentation.  More...
  | 
|   | 
| template<typename Real >  | 
| void  | ComputeLstmNonlinearity (const CuMatrixBase< Real > &input, const CuMatrixBase< Real > ¶ms, CuMatrixBase< Real > *output) | 
|   | this is a special-purpose function used by class LstmNonlinearityComponent, to do its forward propagation.  More...
  | 
|   | 
| template<typename Real >  | 
| void  | CpuComputeLstmNonlinearity (const MatrixBase< Real > &input_mat, const MatrixBase< Real > ¶ms_mat, MatrixBase< Real > *output) | 
|   | 
| template<typename Real >  | 
| void  | BackpropLstmNonlinearity (const CuMatrixBase< Real > &input, const CuMatrixBase< Real > ¶ms, const CuMatrixBase< Real > &output_deriv, const CuMatrixBase< double > &deriv_sum_in, const CuVectorBase< Real > &self_repair_config, double count_in, CuMatrixBase< Real > *input_deriv, CuMatrixBase< Real > *params_deriv, CuMatrixBase< double > *value_sum_out, CuMatrixBase< double > *deriv_sum_out, CuMatrixBase< Real > *self_repair_sum_out) | 
|   | This function does the 'backward' pass corresponding to the function ComputeLstmNonlinearity.  More...
  | 
|   | 
| template<typename Real >  | 
| void  | CpuBackpropLstmNonlinearity (const MatrixBase< Real > &input, const MatrixBase< Real > ¶ms, const MatrixBase< Real > &output_deriv, const MatrixBase< double > &deriv_sum_in, const VectorBase< Real > &self_repair_config, double count_in, MatrixBase< Real > *input_deriv, MatrixBase< Real > *params_deriv, MatrixBase< double > *value_sum_out, MatrixBase< double > *deriv_sum_out, MatrixBase< Real > *self_repair_sum_out) | 
|   | 
| template<typename Real >  | 
| void  | NormalizePerRow (const CuMatrixBase< Real > &in, const Real target_rms, const bool add_log_stddev, CuMatrixBase< Real > *out) | 
|   | Normalize nonlinearity modifies the vector of activations by scaling it so that the root-mean-square equals 1.0.  More...
  | 
|   | 
| template<typename Real >  | 
| void  | DiffNormalizePerRow (const CuMatrixBase< Real > &in_value, const CuMatrixBase< Real > &out_deriv, const Real target_rms, const bool add_log_stddev, CuMatrixBase< Real > *in_deriv) | 
|   |