#include <nnet-parametric-relu.h>


Public Member Functions | |
| ParametricRelu (int32 dim_in, int32 dim_out) | |
| ~ParametricRelu () | |
| Component * | Copy () const | 
| Copy component (deep copy),.  More... | |
| ComponentType | GetType () const | 
| Get Type Identification of the component,.  More... | |
| void | InitData (std::istream &is) | 
| Initialize the content of the component by the 'line' from the prototype,.  More... | |
| void | ReadData (std::istream &is, bool binary) | 
| Reads the component content.  More... | |
| void | WriteData (std::ostream &os, bool binary) const | 
| Writes the component content.  More... | |
| int32 | NumParams () const | 
| Number of trainable parameters,.  More... | |
| void | GetGradient (VectorBase< BaseFloat > *gradient) const | 
| Get gradient reshaped as a vector,.  More... | |
| void | GetParams (VectorBase< BaseFloat > *params) const | 
| Get the trainable parameters reshaped as a vector,.  More... | |
| void | SetParams (const VectorBase< BaseFloat > ¶ms) | 
| Set the trainable parameters from, reshaped as a vector,.  More... | |
| std::string | Info () const | 
| Print some additional info (after <ComponentName> and the dims),.  More... | |
| std::string | InfoGradient () const | 
| Print some additional info about gradient (after <...> and dims),.  More... | |
| void | PropagateFnc (const CuMatrixBase< BaseFloat > &in, CuMatrixBase< BaseFloat > *out) | 
| Abstract interface for propagation/backpropagation.  More... | |
| void | BackpropagateFnc (const CuMatrixBase< BaseFloat > &in, const CuMatrixBase< BaseFloat > &out, const CuMatrixBase< BaseFloat > &out_diff, CuMatrixBase< BaseFloat > *in_diff) | 
| Backward pass transformation (to be implemented by descending class...)  More... | |
| void | Update (const CuMatrixBase< BaseFloat > &input, const CuMatrixBase< BaseFloat > &diff) | 
| Compute gradient and update parameters,.  More... | |
  Public Member Functions inherited from UpdatableComponent | |
| UpdatableComponent (int32 input_dim, int32 output_dim) | |
| virtual | ~UpdatableComponent () | 
| bool | IsUpdatable () const | 
| Check if contains trainable parameters,.  More... | |
| virtual void | SetTrainOptions (const NnetTrainOptions &opts) | 
| Set the training options to the component,.  More... | |
| const NnetTrainOptions & | GetTrainOptions () const | 
| Get the training options from the component,.  More... | |
| virtual void | SetLearnRateCoef (BaseFloat val) | 
| Set the learn-rate coefficient,.  More... | |
| virtual void | SetBiasLearnRateCoef (BaseFloat val) | 
| Set the learn-rate coefficient for bias,.  More... | |
  Public Member Functions inherited from Component | |
| Component (int32 input_dim, int32 output_dim) | |
| Generic interface of a component,.  More... | |
| virtual | ~Component () | 
| virtual bool | IsMultistream () const | 
| Check if component has 'Recurrent' interface (trainable and recurrent),.  More... | |
| int32 | InputDim () const | 
| Get the dimension of the input,.  More... | |
| int32 | OutputDim () const | 
| Get the dimension of the output,.  More... | |
| void | Propagate (const CuMatrixBase< BaseFloat > &in, CuMatrix< BaseFloat > *out) | 
| Perform forward-pass propagation 'in' -> 'out',.  More... | |
| void | Backpropagate (const CuMatrixBase< BaseFloat > &in, const CuMatrixBase< BaseFloat > &out, const CuMatrixBase< BaseFloat > &out_diff, CuMatrix< BaseFloat > *in_diff) | 
| Perform backward-pass propagation 'out_diff' -> 'in_diff'.  More... | |
| void | Write (std::ostream &os, bool binary) const | 
| Write the component to a stream,.  More... | |
Private Attributes | |
| CuVector< BaseFloat > | alpha_ | 
| Vector of 'alphas', one value per neuron.  More... | |
| CuVector< BaseFloat > | beta_ | 
| Vector of 'betas', one value per neuron.  More... | |
| CuVector< BaseFloat > | alpha_corr_ | 
| Vector of 'alpha' updates.  More... | |
| CuVector< BaseFloat > | beta_corr_ | 
| Vector of 'beta' updates.  More... | |
| CuMatrix< BaseFloat > | alpha_aux_ | 
| Auxiliary matrix for getting 'alpha' updates,.  More... | |
| CuMatrix< BaseFloat > | beta_aux_ | 
| Auxiliary matrix for getting 'beta' updates,.  More... | |
| BaseFloat | alpha_learn_rate_coef_ | 
| Controls learning rate for alpha (0.0 disables learning),.  More... | |
| BaseFloat | beta_learn_rate_coef_ | 
| Controls learning rate for beta (0.0 disables learning),.  More... | |
Additional Inherited Members | |
  Public Types inherited from Component | |
| enum | ComponentType {  kUnknown = 0x0, kUpdatableComponent = 0x0100, kAffineTransform, kLinearTransform, kConvolutionalComponent, kLstmProjected, kBlstmProjected, kRecurrentComponent, kActivationFunction = 0x0200, kSoftmax, kHiddenSoftmax, kBlockSoftmax, kSigmoid, kTanh, kParametricRelu, kDropout, kLengthNormComponent, kTranform = 0x0400, kRbm, kSplice, kCopy, kTranspose, kBlockLinearity, kAddShift, kRescale, kKlHmm = 0x0800, kSentenceAveragingComponent, kSimpleSentenceAveragingComponent, kAveragePoolingComponent, kMaxPoolingComponent, kFramePoolingComponent, kParallelComponent, kMultiBasisComponent }  | 
| Component type identification mechanism,.  More... | |
  Static Public Member Functions inherited from Component | |
| static const char * | TypeToMarker (ComponentType t) | 
| Converts component type to marker,.  More... | |
| static ComponentType | MarkerToType (const std::string &s) | 
| Converts marker to component type (case insensitive),.  More... | |
| static Component * | Init (const std::string &conf_line) | 
| Initialize component from a line in config file,.  More... | |
| static Component * | Read (std::istream &is, bool binary) | 
| Read the component from a stream (static method),.  More... | |
  Static Public Attributes inherited from Component | |
| static const struct key_value | kMarkerMap [] | 
| The table with pairs of Component types and markers (defined in nnet-component.cc),.  More... | |
  Protected Attributes inherited from UpdatableComponent | |
| NnetTrainOptions | opts_ | 
| Option-class with training hyper-parameters,.  More... | |
| BaseFloat | learn_rate_coef_ | 
| Scalar applied to learning rate for weight matrices (to be used in ::Update method),.  More... | |
| BaseFloat | bias_learn_rate_coef_ | 
| Scalar applied to learning rate for bias (to be used in ::Update method),.  More... | |
  Protected Attributes inherited from Component | |
| int32 | input_dim_ | 
| Data members,.  More... | |
| int32 | output_dim_ | 
| Dimension of the output of the Component,.  More... | |
Definition at line 34 of file nnet-parametric-relu.h.
      
  | 
  inline | 
Definition at line 36 of file nnet-parametric-relu.h.
Referenced by ParametricRelu::Copy().
      
  | 
  inline | 
Definition at line 46 of file nnet-parametric-relu.h.
      
  | 
  inlinevirtual | 
Backward pass transformation (to be implemented by descending class...)
Implements Component.
Definition at line 158 of file nnet-parametric-relu.h.
References ParametricRelu::alpha_, ParametricRelu::beta_, and CuMatrixBase< Real >::DiffParametricRelu().
      
  | 
  inlinevirtual | 
Copy component (deep copy),.
Implements Component.
Definition at line 49 of file nnet-parametric-relu.h.
References ParametricRelu::ParametricRelu().
      
  | 
  inlinevirtual | 
Get gradient reshaped as a vector,.
Implements UpdatableComponent.
Definition at line 113 of file nnet-parametric-relu.h.
References ParametricRelu::alpha_, ParametricRelu::alpha_corr_, ParametricRelu::beta_, ParametricRelu::beta_corr_, VectorBase< Real >::Dim(), KALDI_ASSERT, ParametricRelu::NumParams(), and VectorBase< Real >::Range().
      
  | 
  inlinevirtual | 
Get the trainable parameters reshaped as a vector,.
Implements UpdatableComponent.
Definition at line 121 of file nnet-parametric-relu.h.
References ParametricRelu::alpha_, ParametricRelu::beta_, VectorBase< Real >::Dim(), KALDI_ASSERT, ParametricRelu::NumParams(), and VectorBase< Real >::Range().
      
  | 
  inlinevirtual | 
Get Type Identification of the component,.
Implements Component.
Definition at line 50 of file nnet-parametric-relu.h.
References Component::kParametricRelu.
      
  | 
  inlinevirtual | 
Print some additional info (after <ComponentName> and the dims),.
Reimplemented from Component.
Definition at line 137 of file nnet-parametric-relu.h.
References ParametricRelu::alpha_, ParametricRelu::alpha_learn_rate_coef_, ParametricRelu::beta_, ParametricRelu::beta_learn_rate_coef_, kaldi::nnet1::MomentStatistics(), and kaldi::nnet1::ToString().
      
  | 
  inlinevirtual | 
Print some additional info about gradient (after <...> and dims),.
Reimplemented from Component.
Definition at line 144 of file nnet-parametric-relu.h.
References ParametricRelu::alpha_corr_, ParametricRelu::alpha_learn_rate_coef_, ParametricRelu::beta_corr_, ParametricRelu::beta_learn_rate_coef_, kaldi::nnet1::MomentStatistics(), and kaldi::nnet1::ToString().
      
  | 
  inlinevirtual | 
Initialize the content of the component by the 'line' from the prototype,.
Implements UpdatableComponent.
Definition at line 52 of file nnet-parametric-relu.h.
References ParametricRelu::alpha_, ParametricRelu::alpha_learn_rate_coef_, ParametricRelu::beta_, ParametricRelu::beta_learn_rate_coef_, KALDI_ERR, kaldi::ReadBasicType(), and kaldi::ReadToken().
      
  | 
  inlinevirtual | 
Number of trainable parameters,.
Implements UpdatableComponent.
Definition at line 109 of file nnet-parametric-relu.h.
References ParametricRelu::alpha_, and ParametricRelu::beta_.
Referenced by ParametricRelu::GetGradient(), ParametricRelu::GetParams(), and ParametricRelu::SetParams().
      
  | 
  inlinevirtual | 
Abstract interface for propagation/backpropagation.
Forward pass transformation (to be implemented by descending class...)
Implements Component.
Definition at line 152 of file nnet-parametric-relu.h.
References ParametricRelu::alpha_, ParametricRelu::beta_, and CuMatrixBase< Real >::ParametricRelu().
      
  | 
  inlinevirtual | 
Reads the component content.
Reimplemented from Component.
Definition at line 73 of file nnet-parametric-relu.h.
References ParametricRelu::alpha_, ParametricRelu::alpha_learn_rate_coef_, ParametricRelu::beta_, ParametricRelu::beta_learn_rate_coef_, kaldi::ExpectToken(), KALDI_ASSERT, KALDI_ERR, Component::output_dim_, kaldi::Peek(), kaldi::PeekToken(), kaldi::ReadBasicType(), and kaldi::ReadToken().
      
  | 
  inlinevirtual | 
Set the trainable parameters from, reshaped as a vector,.
Implements UpdatableComponent.
Definition at line 129 of file nnet-parametric-relu.h.
References ParametricRelu::alpha_, ParametricRelu::beta_, VectorBase< Real >::Dim(), KALDI_ASSERT, ParametricRelu::NumParams(), and VectorBase< Real >::Range().
      
  | 
  inlinevirtual | 
Compute gradient and update parameters,.
Implements UpdatableComponent.
Definition at line 166 of file nnet-parametric-relu.h.
References ParametricRelu::alpha_, ParametricRelu::alpha_aux_, ParametricRelu::alpha_corr_, ParametricRelu::alpha_learn_rate_coef_, ParametricRelu::beta_, ParametricRelu::beta_aux_, ParametricRelu::beta_corr_, ParametricRelu::beta_learn_rate_coef_, NnetTrainOptions::learn_rate, NnetTrainOptions::momentum, and UpdatableComponent::opts_.
      
  | 
  inlinevirtual | 
Writes the component content.
Reimplemented from Component.
Definition at line 97 of file nnet-parametric-relu.h.
References ParametricRelu::alpha_, ParametricRelu::alpha_learn_rate_coef_, ParametricRelu::beta_, ParametricRelu::beta_learn_rate_coef_, kaldi::WriteBasicType(), and kaldi::WriteToken().
Vector of 'alphas', one value per neuron.
Definition at line 193 of file nnet-parametric-relu.h.
Referenced by ParametricRelu::BackpropagateFnc(), ParametricRelu::GetGradient(), ParametricRelu::GetParams(), ParametricRelu::Info(), ParametricRelu::InitData(), ParametricRelu::NumParams(), ParametricRelu::PropagateFnc(), ParametricRelu::ReadData(), ParametricRelu::SetParams(), ParametricRelu::Update(), and ParametricRelu::WriteData().
Auxiliary matrix for getting 'alpha' updates,.
Definition at line 200 of file nnet-parametric-relu.h.
Referenced by ParametricRelu::Update().
Vector of 'alpha' updates.
Definition at line 196 of file nnet-parametric-relu.h.
Referenced by ParametricRelu::GetGradient(), ParametricRelu::InfoGradient(), and ParametricRelu::Update().
      
  | 
  private | 
Controls learning rate for alpha (0.0 disables learning),.
Definition at line 205 of file nnet-parametric-relu.h.
Referenced by ParametricRelu::Info(), ParametricRelu::InfoGradient(), ParametricRelu::InitData(), ParametricRelu::ReadData(), ParametricRelu::Update(), and ParametricRelu::WriteData().
Vector of 'betas', one value per neuron.
Definition at line 194 of file nnet-parametric-relu.h.
Referenced by ParametricRelu::BackpropagateFnc(), ParametricRelu::GetGradient(), ParametricRelu::GetParams(), ParametricRelu::Info(), ParametricRelu::InitData(), ParametricRelu::NumParams(), ParametricRelu::PropagateFnc(), ParametricRelu::ReadData(), ParametricRelu::SetParams(), ParametricRelu::Update(), and ParametricRelu::WriteData().
Auxiliary matrix for getting 'beta' updates,.
Definition at line 202 of file nnet-parametric-relu.h.
Referenced by ParametricRelu::Update().
Vector of 'beta' updates.
Definition at line 197 of file nnet-parametric-relu.h.
Referenced by ParametricRelu::GetGradient(), ParametricRelu::InfoGradient(), and ParametricRelu::Update().
      
  | 
  private | 
Controls learning rate for beta (0.0 disables learning),.
Definition at line 207 of file nnet-parametric-relu.h.
Referenced by ParametricRelu::Info(), ParametricRelu::InfoGradient(), ParametricRelu::InitData(), ParametricRelu::ReadData(), ParametricRelu::Update(), and ParametricRelu::WriteData().