20 #ifndef KALDI_NNET2_COMBINE_NNET_A_H_    21 #define KALDI_NNET2_COMBINE_NNET_A_H_    47                         valid_impr_thresh(0.5), overshoot(1.8),
    48                         min_learning_rate_factor(0.5),
    49                         max_learning_rate_factor(2.0),
    50                         min_learning_rate(0.0001) { }
    53     opts->
Register(
"num-bfgs-iters", &num_bfgs_iters, 
"Maximum number of function "    54                    "evaluations for BFGS to use when optimizing combination weights");
    55     opts->
Register(
"initial-step", &initial_step, 
"Parameter in the optimization, "    56                    "used to set the initial step length; the default value should be "    58     opts->
Register(
"num-bfgs-iters", &num_bfgs_iters, 
"Maximum number of function "    59                    "evaluations for BFGS to use when optimizing combination weights");
    60     opts->
Register(
"valid-impr-thresh", &valid_impr_thresh, 
"Threshold of improvement "    61                    "in validation-set objective function for one iteratin; below this, "    62                    "we start using the \"overshoot\" mechanism to keep learning rates high.");
    63     opts->
Register(
"overshoot", &overshoot, 
"Factor by which we overshoot the step "    64                    "size obtained by BFGS; only applies when validation set impr is less "    65                    "than valid-impr-thresh.");
    66     opts->
Register(
"max-learning-rate-factor", &max_learning_rate_factor,
    67                    "Maximum factor by which to increase the learning rate for any layer.");
    68     opts->
Register(
"min-learning-rate-factor", &min_learning_rate_factor,
    69                    "Minimum factor by which to increase the learning rate for any layer.");
    70     opts->
Register(
"min-learning-rate", &min_learning_rate,
    71                    "Floor on the automatically updated learning rates");
    76                    const std::vector<NnetExample> &validation_set,
    77                    const std::vector<Nnet> &nnets_in,
 This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
void CombineNnetsA(const NnetCombineAconfig &config, const std::vector< NnetExample > &validation_set, const std::vector< Nnet > &nnets, Nnet *nnet_out)
 
virtual void Register(const std::string &name, bool *ptr, const std::string &doc)=0
 
BaseFloat min_learning_rate
 
BaseFloat min_learning_rate_factor
 
BaseFloat max_learning_rate_factor
 
BaseFloat valid_impr_thresh
 
This header provides functionality for sample-by-sample stochastic gradient descent and gradient comp...
 
void Register(OptionsItf *opts)