20 #ifndef KALDI_NNET2_COMBINE_NNET_FAST_H_    21 #define KALDI_NNET2_COMBINE_NNET_FAST_H_    69                            num_threads(1), initial_impr(0.01), fisher_floor(1.0e-20),
    70                            alpha(0.01), fisher_minibatch_size(64), minibatch_size(1024),
    71                            max_lbfgs_dim(10), regularizer(0.0) {}
    74     opts->
Register(
"initial-model", &initial_model, 
"Specifies where to start the "    75                    "optimization from.  If 0 ... #models-1, then specifies the model; "    76                    "if >= #models, then the average of all inputs; if <0, chosen "    77                    "automatically from the previous options.");
    78     opts->
Register(
"num-lbfgs-iters", &num_lbfgs_iters, 
"Maximum number of function "    79                    "evaluations for L-BFGS to use when optimizing combination weights");
    80     opts->
Register(
"initial-impr", &initial_impr, 
"Amount of objective-function change "    81                    "We aim for on the first iteration.");
    82     opts->
Register(
"num-threads", &num_threads, 
"Number of threads to use in "    83                    "multi-core computation");
    84     opts->
Register(
"fisher-floor", &fisher_floor,
    85                    "Floor for diagonal of Fisher matrix (used in preconditioning)");
    86     opts->
Register(
"alpha", &alpha, 
"Value we use in smoothing the Fisher matrix "    87                    "with its diagonal, in preconditioning the update.");
    88     opts->
Register(
"fisher-minibatch-size", &fisher_minibatch_size, 
"Size of minibatch "    89                    "used in computation of Fisher matrix (smaller -> better "    91     opts->
Register(
"minibatch-size", &minibatch_size, 
"Minibatch size used in computing "    92                    "gradients (only affects speed)");
    93     opts->
Register(
"max-lbfgs-dim", &max_lbfgs_dim, 
"Maximum dimension to use in "    94                    "L-BFGS (will not get higher than this even if the dimension "    95                    "of the space gets higher.)");
    96     opts->
Register(
"regularizer", ®ularizer, 
"Add to the objective "    97                    "function (which is average log-like per frame), -0.5 * "    98                    "regularizer * square of parameters.");
   103                       const std::vector<NnetExample> &validation_set,
   104                       const std::vector<Nnet> &nnets_in,
 
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
virtual void Register(const std::string &name, bool *ptr, const std::string &doc)=0
 
void CombineNnetsFast(const NnetCombineFastConfig &combine_config, const std::vector< NnetExample > &validation_set, const std::vector< Nnet > &nnets_in, Nnet *nnet_out)
 
int32 fisher_minibatch_size
 
This header provides functionality for sample-by-sample stochastic gradient descent and gradient comp...
 
Configuration class that controls neural net combination, where we combine a number of neural nets...
 
void Register(OptionsItf *opts)