20 #ifndef KALDI_NNET2_COMBINE_NNET_H_ 21 #define KALDI_NNET2_COMBINE_NNET_H_ 48 test_gradient(false) { }
51 opts->
Register(
"initial-model", &initial_model,
"Specifies where to start the " 52 "optimization from. If 0 ... #models-1, then specifies the model; " 53 "if #models, then the average of all inputs; otherwise, chosen " 54 "automatically from the previous options.");
55 opts->
Register(
"num-bfgs-iters", &num_bfgs_iters,
"Maximum number of function " 56 "evaluations for BFGS to use when optimizing combination weights");
57 opts->
Register(
"initial-impr", &initial_impr,
"Amount of objective-function change " 58 "we aim for on the first iteration.");
59 opts->
Register(
"test-gradient", &test_gradient,
"If true, activate code that " 60 "tests the gradient is accurate.");
65 const std::vector<NnetExample> &validation_set,
66 const std::vector<Nnet> &nnets_in,
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
void Register(OptionsItf *opts)
virtual void Register(const std::string &name, bool *ptr, const std::string &doc)=0
Configuration class that controls neural net combination, where we combine a number of neural nets...
This header provides functionality for sample-by-sample stochastic gradient descent and gradient comp...
static void CombineNnets(const Vector< BaseFloat > &scale_params, const std::vector< Nnet > &nnets, Nnet *dest)