20 #ifndef KALDI_NNET2_COMBINE_NNET_H_    21 #define KALDI_NNET2_COMBINE_NNET_H_    48                        test_gradient(false) { }
    51     opts->
Register(
"initial-model", &initial_model, 
"Specifies where to start the "    52                    "optimization from.  If 0 ... #models-1, then specifies the model; "    53                    "if #models, then the average of all inputs; otherwise, chosen "    54                    "automatically from the previous options.");
    55     opts->
Register(
"num-bfgs-iters", &num_bfgs_iters, 
"Maximum number of function "    56                    "evaluations for BFGS to use when optimizing combination weights");
    57     opts->
Register(
"initial-impr", &initial_impr, 
"Amount of objective-function change "    58                    "we aim for on the first iteration.");
    59     opts->
Register(
"test-gradient", &test_gradient, 
"If true, activate code that "    60                    "tests the gradient is accurate.");
    65                   const std::vector<NnetExample> &validation_set,
    66                   const std::vector<Nnet> &nnets_in,
 This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
void Register(OptionsItf *opts)
 
virtual void Register(const std::string &name, bool *ptr, const std::string &doc)=0
 
Configuration class that controls neural net combination, where we combine a number of neural nets...
 
This header provides functionality for sample-by-sample stochastic gradient descent and gradient comp...
 
static void CombineNnets(const Vector< BaseFloat > &scale_params, const std::vector< Nnet > &nnets, Nnet *dest)