33 "Likely graph/model mismatch, e.g. using wrong HCLG.fst");
49 if (pdf.
Dim() != data.
Dim()) {
51 <<
" vs. model dim = " << pdf.
Dim();
54 KALDI_ERR <<
"State " << (state) <<
": Must call ComputeGconsts() " 55 "before computing likelihood.";
66 KALDI_ERR <<
"Invalid answer (overflow or invalid variances/features?)";
80 for (; it != end; ++it) { it->hit_time = -1; }
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
int32 Dim() const
Returns the dimensionality of the Gaussian mean vectors.
BaseFloat log_sum_exp_prune_
virtual int32 NumIndices() const
Returns the number of states in the acoustic model (they will be indexed one-based, i.e.
const Matrix< BaseFloat > & means_invvars() const
const Vector< BaseFloat > & gconsts() const
Const accessors.
bool valid_gconsts() const
Vector< BaseFloat > data_squared_
Cache for fast likelihood calculation.
const AmDiagGmm & acoustic_model_
const SubVector< Real > Row(MatrixIndexT i) const
Return specific row of matrix [const].
MatrixIndexT Dim() const
Returns the dimension of the vector.
const Matrix< BaseFloat > & feature_matrix_
void AddMatVec(const Real alpha, const MatrixBase< Real > &M, const MatrixTransposeType trans, const VectorBase< Real > &v, const Real beta)
Add matrix times vector : this <– beta*this + alpha*M*v.
std::vector< LikelihoodCacheRecord > log_like_cache_
DiagGmm & GetPdf(int32 pdf_index)
Accessors.
A class representing a vector.
#define KALDI_ASSERT(cond)
Definition for Gaussian Mixture Model with diagonal covariances.
virtual int32 NumFramesReady() const
The call NumFramesReady() will return the number of frames currently available for this decodable obj...
Provides a vector abstraction class.
virtual BaseFloat LogLikelihoodZeroBased(int32 frame, int32 state_index)
const Matrix< BaseFloat > & inv_vars() const