20 #ifndef KALDI_TRANSFORM_LDA_ESTIMATE_H_ 21 #define KALDI_TRANSFORM_LDA_ESTIMATE_H_ 36 within_class_factor(1.0) { }
39 opts->
Register(
"remove-offset", &remove_offset,
"If true, output an affine " 40 "transform that makes the projected data mean equal to zero.");
41 opts->
Register(
"dim", &dim,
"Dimension to project to with LDA");
42 opts->
Register(
"allow-large-dim", &allow_large_dim,
"If true, allow an LDA " 43 "dimension larger than the number of classes.");
44 opts->
Register(
"within-class-factor", &within_class_factor,
"(Deprecated) If 1.0, do " 45 "conventional LDA where the within-class variance will be " 46 "unit in the projected space. May be set to less than 1.0, " 47 "which scales the features to have less variance, particularly " 48 "for dimensions where between-class variance is small; " 49 "this is a feature being experimented with for neural-net " 66 int32 Dim()
const {
return first_acc_.NumCols(); }
68 void ZeroAccumulators();
89 void Read(std::istream &in_stream,
bool binary,
bool add);
90 void Write(std::ostream &out_stream,
bool binary)
const;
114 #endif // KALDI_TRANSFORM_LDA_ESTIMATE_H_ This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
Class for computing linear discriminant analysis (LDA) transform.
int32 Dim() const
Returns the dimensionality of the feature vectors.
Matrix< double > first_acc_
Vector< double > zero_acc_
virtual void Register(const std::string &name, bool *ptr, const std::string &doc)=0
BaseFloat within_class_factor
int32 NumClasses() const
Returns the number of classes.
double TotCount()
Return total count of the data.
SpMatrix< double > total_second_acc_
Provides a vector abstraction class.
void Register(OptionsItf *opts)