20 #ifndef KALDI_TRANSFORM_LDA_ESTIMATE_H_    21 #define KALDI_TRANSFORM_LDA_ESTIMATE_H_    36                         within_class_factor(1.0) { }
    39     opts->
Register(
"remove-offset", &remove_offset, 
"If true, output an affine "    40                    "transform that makes the projected data mean equal to zero.");
    41     opts->
Register(
"dim", &dim, 
"Dimension to project to with LDA");
    42     opts->
Register(
"allow-large-dim", &allow_large_dim, 
"If true, allow an LDA "    43                    "dimension larger than the number of classes.");
    44     opts->
Register(
"within-class-factor", &within_class_factor, 
"(Deprecated) If 1.0, do "    45                    "conventional LDA where the within-class variance will be "    46                    "unit in the projected space.  May be set to less than 1.0, "    47                    "which scales the features to have less variance, particularly "    48                    "for dimensions where between-class variance is small; "    49                    "this is a feature being experimented with for neural-net "    66   int32 Dim()
 const { 
return first_acc_.NumCols(); }
    68   void ZeroAccumulators();
    89   void Read(std::istream &in_stream, 
bool binary, 
bool add);
    90   void Write(std::ostream &out_stream, 
bool binary) 
const;
   114 #endif  // KALDI_TRANSFORM_LDA_ESTIMATE_H_ This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
Class for computing linear discriminant analysis (LDA) transform. 
 
int32 Dim() const
Returns the dimensionality of the feature vectors. 
 
Matrix< double > first_acc_
 
Vector< double > zero_acc_
 
virtual void Register(const std::string &name, bool *ptr, const std::string &doc)=0
 
BaseFloat within_class_factor
 
int32 NumClasses() const
Returns the number of classes. 
 
double TotCount()
Return total count of the data. 
 
SpMatrix< double > total_second_acc_
 
Provides a vector abstraction class. 
 
void Register(OptionsItf *opts)