29     using namespace kaldi;
    32     typedef kaldi::int64 int64;
    35         "Computes and prints the average log-prob per frame of the given data with a\n"    36         "neural net.  The input of this is the output of e.g. nnet-get-egs\n"    37         "Aside from the logging output, which goes to the standard error, this program\n"    38         "prints the average log-prob per frame to the standard output.\n"    39         "Also see nnet-logprob, which produces a matrix of log-probs for each utterance.\n"    41         "Usage:  nnet-compute-prob [options] <model-in> <training-examples-in>\n"    42         "e.g.: nnet-compute-prob 1.nnet ark:valid.egs\n";
    48     if (po.NumArgs() != 2) {
    53     std::string nnet_rxfilename = po.GetArg(1),
    54         examples_rspecifier = po.GetArg(2);
    60       Input ki(nnet_rxfilename, &binary_read);
    61       trans_model.
Read(ki.Stream(), binary_read);
    62       am_nnet.
Read(ki.Stream(), binary_read);
    66     std::vector<NnetExample> examples;
    67     double tot_weight = 0.0, tot_like = 0.0, tot_accuracy = 0.0;
    68     int64 num_examples = 0;
    70     for (; !example_reader.Done(); example_reader.Next(), num_examples++) {
    71       if (examples.size() == 1000) {
    74         tot_accuracy += accuracy;
    78       examples.push_back(example_reader.Value());
    79       if (num_examples % 5000 == 0 && num_examples > 0)
    80         KALDI_LOG << 
"Saw " << num_examples << 
" examples, average "    81                   << 
"probability is " << (tot_like / num_examples) << 
" with "    82                   << 
"total weight " << num_examples;
    84     if (!examples.empty()) {
    87       tot_accuracy += accuracy;      
    91     KALDI_LOG << 
"Saw " << num_examples << 
" examples, average "    92               << 
"probability is " << (tot_like / tot_weight)
    93               << 
" and accuracy is " << (tot_accuracy / tot_weight) << 
" with "    94               << 
"total weight " << tot_weight;
    96     std::cout << (tot_like / tot_weight) << 
"\n";
    97     return (num_examples == 0 ? 1 : 0);
    98   } 
catch(
const std::exception &e) {
    99     std::cerr << e.what() << 
'\n';
 This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
void Read(std::istream &is, bool binary)
 
double ComputeNnetObjf(const Nnet &nnet, const std::vector< NnetExample > &examples, double *tot_accuracy)
Computes objective function over a minibatch. 
 
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
 
void Read(std::istream &is, bool binary)
 
A templated class for reading objects sequentially from an archive or script file; see The Table conc...
 
BaseFloat TotalNnetTrainingWeight(const std::vector< NnetExample > &egs)
Returns the total weight summed over all the examples... 
 
const Nnet & GetNnet() const