Note on how to parse this filename: it contains functions relatied to neural-net training examples, mostly discriminative neural-net training examples, i.e. More...
#include "nnet2/nnet-nnet.h"
#include "util/table-types.h"
#include "lat/kaldi-lattice.h"
#include "nnet2/nnet-example.h"
#include "hmm/transition-model.h"
#include "hmm/posterior.h"
Go to the source code of this file.
Classes | |
struct | SplitDiscriminativeExampleConfig |
Config structure for SplitExample, for splitting discriminative training examples. More... | |
struct | SplitExampleStats |
This struct exists only for diagnostic purposes. More... | |
Namespaces | |
kaldi | |
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for mispronunciations detection tasks, the reference: | |
kaldi::nnet2 | |
Functions | |
bool | LatticeToDiscriminativeExample (const std::vector< int32 > &alignment, const Matrix< BaseFloat > &feats, const CompactLattice &clat, BaseFloat weight, int32 left_context, int32 right_context, DiscriminativeNnetExample *eg) |
Converts lattice to discriminative training example. More... | |
void | SplitDiscriminativeExample (const SplitDiscriminativeExampleConfig &config, const TransitionModel &tmodel, const DiscriminativeNnetExample &eg, std::vector< DiscriminativeNnetExample > *egs_out, SplitExampleStats *stats_out) |
Split a "discriminative example" into multiple pieces, splitting where the lattice has "pinch points". More... | |
void | ExciseDiscriminativeExample (const SplitDiscriminativeExampleConfig &config, const TransitionModel &tmodel, const DiscriminativeNnetExample &eg, std::vector< DiscriminativeNnetExample > *egs_out, SplitExampleStats *stats_out) |
Remove unnecessary frames from discriminative training example. More... | |
void | AppendDiscriminativeExamples (const std::vector< const DiscriminativeNnetExample * > &input, DiscriminativeNnetExample *output) |
Appends the given vector of examples (which must be non-empty) into a single output example (called by CombineExamples, which might be a more convenient interface). More... | |
void | CombineDiscriminativeExamples (int32 max_length, const std::vector< DiscriminativeNnetExample > &input, std::vector< DiscriminativeNnetExample > *output) |
This function is used to combine multiple discriminative-training examples (each corresponding to a segment of a lattice), into one. More... | |
void | SolvePackingProblem (BaseFloat max_cost, const std::vector< BaseFloat > &costs, std::vector< std::vector< size_t > > *groups) |
This function solves the "packing problem" using the "first fit" algorithm. More... | |
void | ExampleToPdfPost (const TransitionModel &tmodel, const std::vector< int32 > &silence_phones, std::string criterion, bool drop_frames, bool one_silence_class, const DiscriminativeNnetExample &eg, Posterior *post) |
Given a discriminative training example, this function works out posteriors at the pdf level (note: these are "discriminative-training posteriors" that may be positive or negative. More... | |
void | UpdateHash (const TransitionModel &tmodel, const DiscriminativeNnetExample &eg, std::string criterion, bool drop_frames, bool one_silence_class, Matrix< double > *hash, double *num_weight, double *den_weight, double *tot_t) |
This function is used in code that tests the functionality that we provide here, about splitting and excising nnet examples. More... | |
Note on how to parse this filename: it contains functions relatied to neural-net training examples, mostly discriminative neural-net training examples, i.e.
type DiscriminativeNnetExample
Definition in file nnet-example-functions.h.