20 #ifndef KALDI_NNET2_NNET_FIX_H_ 21 #define KALDI_NNET2_NNET_FIX_H_ 53 parameter_factor(2.0), relu_bias_change(1.0) { }
55 opts->
Register(
"min-average-deriv", &min_average_deriv,
"Miniumum derivative, " 56 "averaged over the training data, that we allow for a nonlinearity," 57 "expressed relative to the maximum derivative of the nonlinearity," 58 "i.e. 1.0 for tanh or 0.25 for sigmoid, 1.0 for rectified linear.");
59 opts->
Register(
"max-average-deriv", &max_average_deriv,
"Maximum derivative, " 60 "averaged over the training data, that we allow for the nonlinearity " 61 "associated with one neuron.");
62 opts->
Register(
"parameter-factor", ¶meter_factor,
"Maximum factor by which we change " 63 "the set of parameters associated with a neuron.");
64 opts->
Register(
"relu-bias-change", &relu_bias_change,
"For ReLUs, change in bias when " 65 "we identify a component that's too frequently on or off.");
74 #endif // KALDI_NNET2_NNET_FIX_H_ This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
void FixNnet(const NnetFixConfig &config, Nnet *nnet)
void Register(OptionsItf *opts)
virtual void Register(const std::string &name, bool *ptr, const std::string &doc)=0
BaseFloat min_average_deriv
BaseFloat relu_bias_change
BaseFloat max_average_deriv
BaseFloat parameter_factor