112 using namespace kaldi;
115 typedef kaldi::int64 int64;
118 "Get frame-by-frame examples of data for neural network training.\n" 119 "Essentially this is a format change from features and posteriors\n" 120 "into a special frame-by-frame format. To split randomly into\n" 121 "different subsets, do nnet-copy-egs with --random=true, but\n" 122 "note that this does not randomize the order of frames.\n" 124 "Usage: nnet-get-weighted-egs [options] <features-rspecifier> " 125 "<pdf-post-rspecifier> <weights-rspecifier> <training-examples-out>\n" 127 "An example [where $feats expands to the actual features]:\n" 128 "nnet-get-weighted-egs --left-context=8 --right-context=8 \"$feats\" \\\n" 129 " \"ark:gunzip -c exp/nnet/ali.1.gz | ali-to-pdf exp/nnet/1.nnet ark:- ark:- | ali-to-post ark:- ark:- |\" \\\n" 131 "Note: the --left-context and --right-context would be derived from\n" 132 "the output of nnet-info.";
135 int32 left_context = 0, right_context = 0, const_feat_dim = 0;
136 int32 srand_seed = 0;
139 bool use_frame_selection =
true, use_frame_weights=
false;
142 po.Register(
"left-context", &left_context,
"Number of frames of left context " 143 "the neural net requires.");
144 po.Register(
"right-context", &right_context,
"Number of frames of right context " 145 "the neural net requires.");
146 po.Register(
"const-feat-dim", &const_feat_dim,
"If specified, the last " 147 "const-feat-dim dimensions of the feature input are treated as " 148 "constant over the context window (so are not spliced)");
149 po.Register(
"keep-proportion", &keep_proportion,
"If <1.0, this program will " 150 "randomly keep this proportion of the input samples. If >1.0, it will " 151 "in expectation copy a sample this many times. It will copy it a number " 152 "of times equal to floor(keep-proportion) or ceil(keep-proportion).");
153 po.Register(
"srand", &srand_seed,
"Seed for random number generator " 154 "(only relevant if --keep-proportion != 1.0)");
155 po.Register(
"weight-threshold", &weight_threshold,
"Keep only frames with weights " 156 "above this threshold.");
157 po.Register(
"use-frame-selection", &use_frame_selection,
"Remove the frames below threshold.");
158 po.Register(
"use-frame-weights", &use_frame_weights,
"Scale the error derivatives by the weight");
164 if (po.NumArgs() != 4) {
169 std::string feature_rspecifier = po.GetArg(1),
170 pdf_post_rspecifier = po.GetArg(2),
171 weights_rspecifier = po.GetArg(3),
172 examples_wspecifier = po.GetArg(4);
180 int32 num_done = 0, num_err = 0;
181 int64 num_frames_written = 0;
182 int64 num_frames_skipped = 0;
184 for (; !feat_reader.Done(); feat_reader.Next()) {
185 std::string key = feat_reader.Key();
187 if (!pdf_post_reader.HasKey(key)) {
188 KALDI_WARN <<
"No pdf-level posterior for key " << key;
191 const Posterior &pdf_post = pdf_post_reader.Value(key);
192 if (pdf_post.size() != feats.
NumRows()) {
193 KALDI_WARN <<
"Posterior has wrong size " << pdf_post.size()
194 <<
" versus " << feats.
NumRows();
198 if (!weights_reader.HasKey(key)) {
199 KALDI_ERR <<
"No weights for utterance " << key;
206 if (weights.
Dim() !=
static_cast<int32
>(pdf_post.size())) {
208 <<
" have wrong size, " << weights.
Dim()
209 <<
" vs. " << pdf_post.size();
213 ProcessFile(feats, pdf_post, key, weights, left_context, right_context,
214 const_feat_dim, keep_proportion, weight_threshold,
215 use_frame_selection, use_frame_weights,
216 &num_frames_written, &num_frames_skipped, &example_writer);
222 KALDI_LOG <<
"Finished generating examples, " 223 <<
"successfully processed " << num_done
224 <<
" feature files, wrote " << num_frames_written <<
" examples, " 225 <<
"skipped " << num_frames_skipped <<
" examples, " 226 << num_err <<
" files had errors.";
227 return (num_done == 0 ? 1 : 0);
228 }
catch(
const std::exception &e) {
229 std::cerr << e.what() <<
'\n';
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
A templated class for writing objects to an archive or script file; see The Table concept...
Allows random access to a collection of objects in an archive or script file; see The Table concept...
std::vector< std::vector< std::pair< int32, BaseFloat > > > Posterior
Posterior is a typedef for storing acoustic-state (actually, transition-id) posteriors over an uttera...
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
A templated class for reading objects sequentially from an archive or script file; see The Table conc...
MatrixIndexT Dim() const
Returns the dimension of the vector.
A class representing a vector.
MatrixIndexT NumRows() const
Returns number of rows (or zero for empty matrix).
static void ProcessFile(const MatrixBase< BaseFloat > &feats, const Posterior &pdf_post, const std::string &utt_id, int32 left_context, int32 right_context, int32 num_frames, int32 const_feat_dim, int64 *num_frames_written, int64 *num_egs_written, NnetExampleWriter *example_writer)