35     using namespace kaldi;
    38     using fst::SymbolTable;
    43         "Generate lattices using neural net model.\n"    44         "Usage: nnet-latgen-faster [options] <nnet-in> <fst-in|fsts-rspecifier> <features-rspecifier>"    45         " <lattice-wspecifier> [ <words-wspecifier> [<alignments-wspecifier>] ]\n";
    48     bool allow_partial = 
false;
    52     std::string word_syms_filename;
    54     po.Register(
"acoustic-scale", &acoustic_scale, 
"Scaling factor for acoustic likelihoods");
    55     po.Register(
"word-symbol-table", &word_syms_filename, 
"Symbol table for words [for debug output]");
    56     po.Register(
"allow-partial", &allow_partial, 
"If true, produce output even if end state was not reached.");
    60     if (po.NumArgs() < 4 || po.NumArgs() > 6) {
    65     std::string model_in_filename = po.GetArg(1),
    66         fst_in_str = po.GetArg(2),
    67         feature_rspecifier = po.GetArg(3),
    68         lattice_wspecifier = po.GetArg(4),
    69         words_wspecifier = po.GetOptArg(5),
    70         alignment_wspecifier = po.GetOptArg(6);
    76       Input ki(model_in_filename, &binary);
    77       trans_model.
Read(ki.Stream(), binary);
    78       am_nnet.
Read(ki.Stream(), binary);
    84     if (! (determinize ? compact_lattice_writer.
Open(lattice_wspecifier)
    85            : lattice_writer.
Open(lattice_wspecifier)))
    86       KALDI_ERR << 
"Could not open table for writing lattices: "    87                  << lattice_wspecifier;
    93     fst::SymbolTable *word_syms = NULL;
    94     if (word_syms_filename != 
"")
    95       if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename)))
    96         KALDI_ERR << 
"Could not read symbol table from file "    97                    << word_syms_filename;
   100     double tot_like = 0.0;
   101     kaldi::int64 frame_count = 0;
   102     int num_success = 0, num_fail = 0;
   114         for (; !feature_reader.Done(); feature_reader.Next()) {
   115           std::string utt = feature_reader.Key();
   117           if (features.NumRows() == 0) {
   118             KALDI_WARN << 
"Zero-length utterance: " << utt;
   122           bool pad_input = 
true;
   130                   decoder, nnet_decodable, trans_model, word_syms, utt,
   131                   acoustic_scale, determinize, allow_partial, &alignment_writer,
   132                   &words_writer, &compact_lattice_writer, &lattice_writer,
   135             frame_count += features.NumRows();
   144       for (; !fst_reader.Done(); fst_reader.Next()) {
   145         std::string utt = fst_reader.Key();
   146         if (!feature_reader.HasKey(utt)) {
   147           KALDI_WARN << 
"Not decoding utterance " << utt
   148                      << 
" because no features available.";
   154           KALDI_WARN << 
"Zero-length utterance: " << utt;
   161         bool pad_input = 
true;
   169                 decoder, nnet_decodable, trans_model, word_syms, utt,
   170                 acoustic_scale, determinize, allow_partial, &alignment_writer,
   171                 &words_writer, &compact_lattice_writer, &lattice_writer,
   174           frame_count += features.
NumRows();
   180     double elapsed = timer.
Elapsed();
   182               << 
"s: real-time factor assuming 100 frames/sec is "   183               << (elapsed*100.0/frame_count);
   184     KALDI_LOG << 
"Done " << num_success << 
" utterances, failed for "   186     KALDI_LOG << 
"Overall log-likelihood per frame is " << (tot_like/frame_count) << 
" over "   187               << frame_count<<
" frames.";
   190     if (num_success != 0) 
return 0;
   192   } 
catch(
const std::exception &e) {
   193     std::cerr << e.what();
 This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
bool Open(const std::string &wspecifier)
 
Fst< StdArc > * ReadFstKaldiGeneric(std::string rxfilename, bool throw_on_err)
 
void Read(std::istream &is, bool binary)
 
A templated class for writing objects to an archive or script file; see The Table concept...
 
bool DecodeUtteranceLatticeFaster(LatticeFasterDecoderTpl< FST > &decoder, DecodableInterface &decodable, const TransitionModel &trans_model, const fst::SymbolTable *word_syms, std::string utt, double acoustic_scale, bool determinize, bool allow_partial, Int32VectorWriter *alignment_writer, Int32VectorWriter *words_writer, CompactLatticeWriter *compact_lattice_writer, LatticeWriter *lattice_writer, double *like_ptr)
This function DecodeUtteranceLatticeFaster is used in several decoders, and we have moved it here...
 
This class represents a matrix that's stored on the GPU if we have one, and in memory if not...
 
RspecifierType ClassifyRspecifier(const std::string &rspecifier, std::string *rxfilename, RspecifierOptions *opts)
 
Allows random access to a collection of objects in an archive or script file; see The Table concept...
 
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
 
void Read(std::istream &is, bool binary)
 
A templated class for reading objects sequentially from an archive or script file; see The Table conc...
 
This is the "normal" lattice-generating decoder. 
 
DecodableAmNnet is a decodable object that decodes with a neural net acoustic model of type AmNnet...
 
MatrixIndexT NumRows() const
Dimensions. 
 
void Register(OptionsItf *opts)
 
double Elapsed() const
Returns time in seconds.