nnet-update.cc File Reference
Include dependency graph for nnet-update.cc:

Go to the source code of this file.

Namespaces

 kaldi
 This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for mispronunciations detection tasks, the reference:
 
 kaldi::nnet2
 

Functions

void FormatNnetInput (const Nnet &nnet, const std::vector< NnetExample > &data, Matrix< BaseFloat > *mat)
 Takes the input to the nnet for a minibatch of examples, and formats as a single matrix. More...
 
BaseFloat TotalNnetTrainingWeight (const std::vector< NnetExample > &egs)
 Returns the total weight summed over all the examples... More...
 
double ComputeNnetObjf (const Nnet &nnet, const std::vector< NnetExample > &examples, double *tot_accuracy=NULL)
 Computes objective function over a minibatch. More...
 
double DoBackprop (const Nnet &nnet, const std::vector< NnetExample > &examples, Nnet *nnet_to_update, double *tot_accuracy=NULL)
 This function computes the objective function and either updates the model or adds to parameter gradients. More...
 
double DoBackprop (const Nnet &nnet, const std::vector< NnetExample > &examples, Matrix< BaseFloat > *examples_formatted, Nnet *nnet_to_update, double *tot_accuracy=NULL)
 This version of DoBackprop allows you to separately call FormatNnetInput and provide the result to DoBackprop; this can be useful when using GPUs because the call to FormatNnetInput can be in a separate thread from the one that uses the GPU. More...
 
double ComputeNnetGradient (const Nnet &nnet, const std::vector< NnetExample > &examples, int32 batch_size, Nnet *gradient)
 ComputeNnetGradient is mostly used to compute gradients on validation sets; it divides the example into batches and calls DoBackprop() on each. More...
 
double ComputeNnetObjf (const Nnet &nnet, const std::vector< NnetExample > &examples, int32 minibatch_size, double *tot_accuracy=NULL)
 This version of ComputeNnetObjf breaks up the examples into multiple minibatches to do the computation. More...