29     using namespace kaldi;
    32     typedef kaldi::int64 int64;
    35         "Does the neural net computation for each file of input features, and\n"    36         "outputs as a matrix the result.  Used mostly for debugging.\n"    37         "Note: if you want it to apply a log (e.g. for log-likelihoods), use\n"    38         "--apply-log=true.  Unlike nnet-am-compute, this version reads a 'raw'\n"    41         "Usage:  nnet-compute [options] <raw-nnet-in> <feature-rspecifier> "    42         "<feature-or-loglikes-wspecifier>\n";
    44     bool apply_log = 
false;
    45     bool pad_input = 
true;
    47     po.Register(
"apply-log", &apply_log, 
"Apply a log to the result of the computation "    48                 "before outputting.");
    49     po.Register(
"pad-input", &pad_input, 
"If true, duplicate the first and last frames "    50                 "of input features as required for temporal context, to prevent #frames "    51                 "of output being less than those of input.");
    55     if (po.NumArgs() != 3) {
    60     std::string raw_nnet_rxfilename = po.GetArg(1),
    61         features_rspecifier = po.GetArg(2),
    62         features_or_loglikes_wspecifier = po.GetArg(3);
    67     int64 num_done = 0, num_frames = 0;
    71     for (; !feature_reader.Done();  feature_reader.Next()) {
    72       std::string utt = feature_reader.Key();
    78       if (output_frames <= 0) {
    79         KALDI_WARN << 
"Skipping utterance " << utt << 
" because output "    87         output.ApplyFloor(1.0e-20);
    90       writer.Write(utt, output);
    95     KALDI_LOG << 
"Processed " << num_done << 
" feature files, "    96               << num_frames << 
" frames of input were processed.";
    98     return (num_done == 0 ? 1 : 0);
    99   } 
catch(
const std::exception &e) {
   100     std::cerr << e.what() << 
'\n';
 This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
int32 LeftContext() const
Returns the left-context summed over all the Components... 
 
int32 OutputDim() const
The output dimension of the network – typically the number of pdfs. 
 
A templated class for writing objects to an archive or script file; see The Table concept...
 
This class represents a matrix that's stored on the GPU if we have one, and in memory if not...
 
void NnetComputation(const Nnet &nnet, const CuMatrixBase< BaseFloat > &input, bool pad_input, CuMatrixBase< BaseFloat > *output)
Does the basic neural net computation, on a sequence of data (e.g. 
 
void ReadKaldiObject(const std::string &filename, Matrix< float > *m)
 
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
 
int32 RightContext() const
Returns the right-context summed over all the Components... 
 
A templated class for reading objects sequentially from an archive or script file; see The Table conc...
 
MatrixIndexT NumRows() const
Dimensions.