81     using namespace kaldi;
    84     typedef kaldi::int64 int64;
    87         "This program averages the parameters over a number of 'raw' nnet3 neural nets.\n"    89         "Usage:  nnet3-average [options] <model1> <model2> ... <modelN> <model-out>\n"    92         " nnet3-average 1.1.nnet 1.2.nnet 1.3.nnet 2.nnet\n";
    94     bool binary_write = 
true;
    95     int32 num_threads = -1;
    98     po.Register(
"binary", &binary_write, 
"Write output in binary mode");
    99     std::string weights_str;
   100     po.Register(
"weights", &weights_str, 
"Colon-separated list of weights, one "   101                 "for each input model.  These will be normalized to sum to one.");
   102     po.Register(
"num-threads", &num_threads, 
"Number of threads to read the "   103                 "models (will be set automatically if not set.");
   107     if (po.NumArgs() < 2) {
   113         first_nnet_rxfilename = po.GetArg(1),
   114         nnet_wxfilename = po.GetArg(po.NumArgs());
   116     int32 num_inputs = po.NumArgs() - 1;
   118     if (num_threads <= 0) {
   120       if (num_inputs > 10) num_threads = 3;
   121       else if (num_inputs > 5) num_threads = 2;
   122       else num_threads = 1;
   125     if (num_threads > 1 && num_threads * 2 > num_inputs) {
   126       num_threads = num_inputs / 2;
   129     std::vector<BaseFloat> model_weights;
   130     GetWeights(weights_str, num_inputs, &model_weights);
   132     std::vector<Nnet> nnets(num_threads);
   133     std::vector<int32> return_statuses(num_threads);
   135     std::vector<std::thread*> threads(num_threads);
   137     for (int32 thread_id = 0; thread_id < num_threads; thread_id++) {
   138       std::vector<std::pair<std::string, BaseFloat> > this_models_and_weights;
   139       for (int32 
j = 1 + thread_id; 
j < po.NumArgs(); 
j += num_threads) {
   140         this_models_and_weights.push_back(std::pair<std::string, BaseFloat>(
   141             po.GetArg(
j), model_weights[
j - 1]));
   143       threads[thread_id] = 
new std::thread(
ReadModels, this_models_and_weights,
   145                                            &(return_statuses[thread_id]));
   149     for (int32 thread_id = 0; thread_id < num_threads; thread_id++) {
   150       threads[thread_id]->join();
   151       delete threads[thread_id];
   152       if (!return_statuses[thread_id])
   154       if (success && thread_id > 0)
   155         AddNnet(nnets[thread_id], 1.0, &(nnets[0]));
   159       KALDI_ERR << 
"Error detected in a model-reading thread.";
   164     KALDI_LOG << 
"Averaged parameters of " << num_inputs
   165               << 
" neural nets, and wrote to " << nnet_wxfilename;
   167   } 
catch(
const std::exception &e) {
   168     std::cerr << e.what() << 
'\n';
 This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
void GetWeights(const std::string &weights_str, int32 num_inputs, std::vector< BaseFloat > *weights)
 
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
 
void ReadModels(std::vector< std::pair< std::string, BaseFloat > > models_and_weights, nnet3::Nnet *output_nnet, int32 *success)
 
void WriteKaldiObject(const C &c, const std::string &filename, bool binary)
 
void AddNnet(const Nnet &src, BaseFloat alpha, Nnet *dest)
Does *dest += alpha * src (affects nnet parameters and stored stats).