nnet3-discriminative-shuffle-egs.cc File Reference
Include dependency graph for nnet3-discriminative-shuffle-egs.cc:

Go to the source code of this file.

Functions

int main (int argc, char *argv[])
 

Function Documentation

◆ main()

int main ( int  argc,
char *  argv[] 
)

Definition at line 26 of file nnet3-discriminative-shuffle-egs.cc.

References SequentialTableReader< Holder >::Done(), ParseOptions::GetArg(), rnnlm::i, KALDI_ASSERT, KALDI_LOG, SequentialTableReader< Holder >::Key(), SequentialTableReader< Holder >::Next(), ParseOptions::NumArgs(), ParseOptions::PrintUsage(), kaldi::RandInt(), ParseOptions::Read(), ParseOptions::Register(), SequentialTableReader< Holder >::Value(), and TableWriter< Holder >::Write().

26  {
27  try {
28  using namespace kaldi;
29  using namespace kaldi::nnet3;
30  typedef kaldi::int32 int32;
31  typedef kaldi::int64 int64;
32 
33  const char *usage =
34  "Copy nnet3 discriminative training examples from the input to output,\n"
35  "while randomly shuffling the order. This program will keep all of the examples\n"
36  "in memory at once, unless you use the --buffer-size option\n"
37  "\n"
38  "Usage: nnet3-discriminative-shuffle-egs [options] <egs-rspecifier> <egs-wspecifier>\n"
39  "\n"
40  "nnet3-discriminative-shuffle-egs --srand=1 ark:train.egs ark:shuffled.egs\n";
41 
42  int32 srand_seed = 0;
43  int32 buffer_size = 0;
44  ParseOptions po(usage);
45  po.Register("srand", &srand_seed, "Seed for random number generator ");
46  po.Register("buffer-size", &buffer_size, "If >0, size of a buffer we use "
47  "to do limited-memory partial randomization. Otherwise, do "
48  "full randomization.");
49 
50  po.Read(argc, argv);
51 
52  srand(srand_seed);
53 
54  if (po.NumArgs() != 2) {
55  po.PrintUsage();
56  exit(1);
57  }
58 
59  std::string examples_rspecifier = po.GetArg(1),
60  examples_wspecifier = po.GetArg(2);
61 
62  int64 num_done = 0;
63 
64  std::vector<std::pair<std::string, NnetDiscriminativeExample*> > egs;
65 
66  SequentialNnetDiscriminativeExampleReader example_reader(examples_rspecifier);
67  NnetDiscriminativeExampleWriter example_writer(examples_wspecifier);
68  if (buffer_size == 0) { // Do full randomization
69  // Putting in an extra level of indirection here to avoid excessive
70  // computation and memory demands when we have to resize the vector.
71 
72  for (; !example_reader.Done(); example_reader.Next())
73  egs.push_back(std::pair<std::string, NnetDiscriminativeExample*>(
74  example_reader.Key(),
75  new NnetDiscriminativeExample(example_reader.Value())));
76 
77  std::random_shuffle(egs.begin(), egs.end());
78  } else {
79  KALDI_ASSERT(buffer_size > 0);
80  egs.resize(buffer_size,
81  std::pair<std::string, NnetDiscriminativeExample*>("", NULL));
82  for (; !example_reader.Done(); example_reader.Next()) {
83  int32 index = RandInt(0, buffer_size - 1);
84  if (egs[index].second == NULL) {
85  egs[index] = std::pair<std::string, NnetDiscriminativeExample*>(
86  example_reader.Key(),
87  new NnetDiscriminativeExample(example_reader.Value()));
88  } else {
89  example_writer.Write(egs[index].first, *(egs[index].second));
90  egs[index].first = example_reader.Key();
91  *(egs[index].second) = example_reader.Value();
92  num_done++;
93  }
94  }
95  }
96  for (size_t i = 0; i < egs.size(); i++) {
97  if (egs[i].second != NULL) {
98  example_writer.Write(egs[i].first, *(egs[i].second));
99  delete egs[i].second;
100  num_done++;
101  }
102  }
103 
104  KALDI_LOG << "Shuffled order of " << num_done
105  << " neural-network training examples "
106  << (buffer_size ? "using a buffer (partial randomization)" : "");
107 
108  return (num_done == 0 ? 1 : 0);
109  } catch(const std::exception &e) {
110  std::cerr << e.what() << '\n';
111  return -1;
112  }
113 }
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
Definition: chain.dox:20
A templated class for writing objects to an archive or script file; see The Table concept...
Definition: kaldi-table.h:368
kaldi::int32 int32
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
Definition: parse-options.h:36
A templated class for reading objects sequentially from an archive or script file; see The Table conc...
Definition: kaldi-table.h:287
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:185
#define KALDI_LOG
Definition: kaldi-error.h:153
NnetDiscriminativeExample is like NnetExample, but specialized for sequence training.
int32 RandInt(int32 min_val, int32 max_val, struct RandomState *state)
Definition: kaldi-math.cc:95