38 using namespace kaldi;
41 using fst::SymbolTable;
46 "Generate lattices using nnet3 neural net model.\n" 47 "[this version uses the 'looped' computation, which may be slightly faster for\n" 48 "many architectures, but should not be used for backwards-recurrent architectures\n" 50 "Usage: nnet3-latgen-faster-looped [options] <nnet-in> <fst-in|fsts-rspecifier> <features-rspecifier>" 51 " <lattice-wspecifier> [ <words-wspecifier> [<alignments-wspecifier>] ]\n";
54 bool allow_partial =
false;
58 std::string word_syms_filename;
59 std::string ivector_rspecifier,
60 online_ivector_rspecifier,
62 int32 online_ivector_period = 0;
65 po.Register(
"word-symbol-table", &word_syms_filename,
66 "Symbol table for words [for debug output]");
67 po.Register(
"allow-partial", &allow_partial,
68 "If true, produce output even if end state was not reached.");
69 po.Register(
"ivectors", &ivector_rspecifier,
"Rspecifier for " 70 "iVectors as vectors (i.e. not estimated online); per utterance " 71 "by default, or per speaker if you provide the --utt2spk option.");
72 po.Register(
"online-ivectors", &online_ivector_rspecifier,
"Rspecifier for " 73 "iVectors estimated online, as matrices. If you supply this," 74 " you must set the --online-ivector-period option.");
75 po.Register(
"online-ivector-period", &online_ivector_period,
"Number of frames " 76 "between iVectors in matrices supplied to the --online-ivectors " 81 if (po.NumArgs() < 4 || po.NumArgs() > 6) {
86 std::string model_in_filename = po.GetArg(1),
87 fst_in_str = po.GetArg(2),
88 feature_rspecifier = po.GetArg(3),
89 lattice_wspecifier = po.GetArg(4),
90 words_wspecifier = po.GetOptArg(5),
91 alignment_wspecifier = po.GetOptArg(6);
97 Input ki(model_in_filename, &binary);
98 trans_model.
Read(ki.Stream(), binary);
99 am_nnet.
Read(ki.Stream(), binary);
108 if (! (determinize ? compact_lattice_writer.
Open(lattice_wspecifier)
109 : lattice_writer.
Open(lattice_wspecifier)))
110 KALDI_ERR <<
"Could not open table for writing lattices: " 111 << lattice_wspecifier;
114 online_ivector_rspecifier);
116 ivector_rspecifier, utt2spk_rspecifier);
121 fst::SymbolTable *word_syms = NULL;
122 if (word_syms_filename !=
"")
123 if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename)))
124 KALDI_ERR <<
"Could not read symbol table from file " 125 << word_syms_filename;
127 double tot_like = 0.0;
128 kaldi::int64 frame_count = 0;
129 int num_success = 0, num_fail = 0;
148 for (; !feature_reader.Done(); feature_reader.Next()) {
149 std::string utt = feature_reader.Key();
151 if (features.NumRows() == 0) {
152 KALDI_WARN <<
"Zero-length utterance: " << utt;
158 if (!ivector_rspecifier.empty()) {
159 if (!ivector_reader.HasKey(utt)) {
160 KALDI_WARN <<
"No iVector available for utterance " << utt;
164 ivector = &ivector_reader.Value(utt);
167 if (!online_ivector_rspecifier.empty()) {
168 if (!online_ivector_reader.HasKey(utt)) {
169 KALDI_WARN <<
"No online iVector available for utterance " << utt;
173 online_ivectors = &online_ivector_reader.Value(utt);
179 decodable_info, trans_model, features, ivector, online_ivectors,
180 online_ivector_period);
184 decoder, nnet_decodable, trans_model, word_syms, utt,
186 &alignment_writer, &words_writer, &compact_lattice_writer,
190 frame_count += nnet_decodable.NumFramesReady();
199 for (; !fst_reader.Done(); fst_reader.Next()) {
200 std::string utt = fst_reader.Key();
201 if (!feature_reader.HasKey(utt)) {
202 KALDI_WARN <<
"Not decoding utterance " << utt
203 <<
" because no features available.";
209 KALDI_WARN <<
"Zero-length utterance: " << utt;
218 if (!ivector_rspecifier.empty()) {
219 if (!ivector_reader.HasKey(utt)) {
220 KALDI_WARN <<
"No iVector available for utterance " << utt;
224 ivector = &ivector_reader.Value(utt);
227 if (!online_ivector_rspecifier.empty()) {
228 if (!online_ivector_reader.HasKey(utt)) {
229 KALDI_WARN <<
"No online iVector available for utterance " << utt;
233 online_ivectors = &online_ivector_reader.Value(utt);
238 decodable_info, trans_model, features, ivector, online_ivectors,
239 online_ivector_period);
243 decoder, nnet_decodable, trans_model, word_syms, utt,
245 &alignment_writer, &words_writer, &compact_lattice_writer,
246 &lattice_writer, &like)) {
248 frame_count += nnet_decodable.NumFramesReady();
254 kaldi::int64 input_frame_count =
257 double elapsed = timer.
Elapsed();
259 <<
"s: real-time factor assuming 100 frames/sec is " 260 << (elapsed * 100.0 / input_frame_count);
261 KALDI_LOG <<
"Done " << num_success <<
" utterances, failed for " 263 KALDI_LOG <<
"Overall log-likelihood per frame is " 264 << (tot_like / frame_count) <<
" over " 265 << frame_count <<
" frames.";
268 if (num_success != 0)
return 0;
270 }
catch(
const std::exception &e) {
271 std::cerr << e.what();
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
void CollapseModel(const CollapseModelConfig &config, Nnet *nnet)
This function modifies the neural net for efficiency, in a way that suitable to be done in test time...
bool Open(const std::string &wspecifier)
int32 frame_subsampling_factor
Fst< StdArc > * ReadFstKaldiGeneric(std::string rxfilename, bool throw_on_err)
This class is for when you are reading something in random access, but it may actually be stored per-...
void SetBatchnormTestMode(bool test_mode, Nnet *nnet)
This function affects only components of type BatchNormComponent.
A templated class for writing objects to an archive or script file; see The Table concept...
bool DecodeUtteranceLatticeFaster(LatticeFasterDecoderTpl< FST > &decoder, DecodableInterface &decodable, const TransitionModel &trans_model, const fst::SymbolTable *word_syms, std::string utt, double acoustic_scale, bool determinize, bool allow_partial, Int32VectorWriter *alignment_writer, Int32VectorWriter *words_writer, CompactLatticeWriter *compact_lattice_writer, LatticeWriter *lattice_writer, double *like_ptr)
This function DecodeUtteranceLatticeFaster is used in several decoders, and we have moved it here...
const Nnet & GetNnet() const
void Read(std::istream &is, bool binary)
RspecifierType ClassifyRspecifier(const std::string &rspecifier, std::string *rxfilename, RspecifierOptions *opts)
Allows random access to a collection of objects in an archive or script file; see The Table concept...
void SetDropoutTestMode(bool test_mode, Nnet *nnet)
This function affects components of child-classes of RandomComponent.
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
void Read(std::istream &is, bool binary)
A templated class for reading objects sequentially from an archive or script file; see The Table conc...
This is the "normal" lattice-generating decoder.
A class representing a vector.
MatrixIndexT NumRows() const
Returns number of rows (or zero for empty matrix).
void Register(OptionsItf *opts)
double Elapsed() const
Returns time in seconds.
When you instantiate class DecodableNnetSimpleLooped, you should give it a const reference to this cl...
void Register(OptionsItf *opts)
Config class for the CollapseModel function.