38 using namespace kaldi;
41 using fst::SymbolTable;
46 "Generate lattices using nnet3 neural net model, and GrammarFst-based graph\n" 47 "see kaldi-asr.org/doc/grammar.html for more context.\n" 49 "Usage: nnet3-latgen-grammar [options] <nnet-in> <grammar-fst-in> <features-rspecifier>" 50 " <lattice-wspecifier> [ <words-wspecifier> [<alignments-wspecifier>] ]\n";
54 bool allow_partial =
false;
58 std::string word_syms_filename;
59 std::string ivector_rspecifier,
60 online_ivector_rspecifier,
62 int32 online_ivector_period = 0;
65 po.Register(
"word-symbol-table", &word_syms_filename,
66 "Symbol table for words [for debug output]");
67 po.Register(
"allow-partial", &allow_partial,
68 "If true, produce output even if end state was not reached.");
69 po.Register(
"ivectors", &ivector_rspecifier,
"Rspecifier for " 70 "iVectors as vectors (i.e. not estimated online); per utterance " 71 "by default, or per speaker if you provide the --utt2spk option.");
72 po.Register(
"utt2spk", &utt2spk_rspecifier,
"Rspecifier for " 73 "utt2spk option used to get ivectors per speaker");
74 po.Register(
"online-ivectors", &online_ivector_rspecifier,
"Rspecifier for " 75 "iVectors estimated online, as matrices. If you supply this," 76 " you must set the --online-ivector-period option.");
77 po.Register(
"online-ivector-period", &online_ivector_period,
"Number of frames " 78 "between iVectors in matrices supplied to the --online-ivectors " 83 if (po.NumArgs() < 4 || po.NumArgs() > 6) {
88 std::string model_rxfilename = po.GetArg(1),
89 grammar_fst_rxfilename = po.GetArg(2),
90 feature_rspecifier = po.GetArg(3),
91 lattice_wspecifier = po.GetArg(4),
92 words_wspecifier = po.GetOptArg(5),
93 alignment_wspecifier = po.GetOptArg(6);
99 Input ki(model_rxfilename, &binary);
100 trans_model.
Read(ki.Stream(), binary);
101 am_nnet.
Read(ki.Stream(), binary);
110 if (! (determinize ? compact_lattice_writer.
Open(lattice_wspecifier)
111 : lattice_writer.
Open(lattice_wspecifier)))
112 KALDI_ERR <<
"Could not open table for writing lattices: " 113 << lattice_wspecifier;
116 online_ivector_rspecifier);
118 ivector_rspecifier, utt2spk_rspecifier);
123 fst::SymbolTable *word_syms = NULL;
124 if (word_syms_filename !=
"")
125 if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename)))
126 KALDI_ERR <<
"Could not read symbol table from file " 127 << word_syms_filename;
129 double tot_like = 0.0;
130 kaldi::int64 frame_count = 0;
131 int num_success = 0, num_fail = 0;
146 for (; !feature_reader.Done(); feature_reader.Next()) {
147 std::string utt = feature_reader.Key();
149 if (features.NumRows() == 0) {
150 KALDI_WARN <<
"Zero-length utterance: " << utt;
156 if (!ivector_rspecifier.empty()) {
157 if (!ivector_reader.HasKey(utt)) {
158 KALDI_WARN <<
"No iVector available for utterance " << utt;
162 ivector = &ivector_reader.Value(utt);
165 if (!online_ivector_rspecifier.empty()) {
166 if (!online_ivector_reader.HasKey(utt)) {
167 KALDI_WARN <<
"No online iVector available for utterance " << utt;
171 online_ivectors = &online_ivector_reader.Value(utt);
176 decodable_opts, trans_model, am_nnet,
177 features, ivector, online_ivectors,
178 online_ivector_period, &compiler);
182 decoder, nnet_decodable, trans_model, word_syms, utt,
184 &alignment_writer, &words_writer, &compact_lattice_writer,
188 frame_count += nnet_decodable.NumFramesReady();
194 kaldi::int64 input_frame_count =
197 double elapsed = timer.
Elapsed();
199 <<
"s: real-time factor assuming 100 frames/sec is " 200 << (elapsed * 100.0 / input_frame_count);
201 KALDI_LOG <<
"Done " << num_success <<
" utterances, failed for " 203 KALDI_LOG <<
"Overall log-likelihood per frame is " 204 << (tot_like / frame_count) <<
" over " 205 << frame_count <<
" frames.";
208 if (num_success != 0)
return 0;
210 }
catch(
const std::exception &e) {
211 std::cerr << e.what();
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
void CollapseModel(const CollapseModelConfig &config, Nnet *nnet)
This function modifies the neural net for efficiency, in a way that suitable to be done in test time...
bool Open(const std::string &wspecifier)
For an extended explanation of the framework of which grammar-fsts are a part, please see Support for...
This class is for when you are reading something in random access, but it may actually be stored per-...
This class enables you to do the compilation and optimization in one call, and also ensures that if t...
void SetBatchnormTestMode(bool test_mode, Nnet *nnet)
This function affects only components of type BatchNormComponent.
A templated class for writing objects to an archive or script file; see The Table concept...
bool DecodeUtteranceLatticeFaster(LatticeFasterDecoderTpl< FST > &decoder, DecodableInterface &decodable, const TransitionModel &trans_model, const fst::SymbolTable *word_syms, std::string utt, double acoustic_scale, bool determinize, bool allow_partial, Int32VectorWriter *alignment_writer, Int32VectorWriter *words_writer, CompactLatticeWriter *compact_lattice_writer, LatticeWriter *lattice_writer, double *like_ptr)
This function DecodeUtteranceLatticeFaster is used in several decoders, and we have moved it here...
const Nnet & GetNnet() const
void Read(std::istream &is, bool binary)
void ReadKaldiObject(const std::string &filename, Matrix< float > *m)
Allows random access to a collection of objects in an archive or script file; see The Table concept...
void SetDropoutTestMode(bool test_mode, Nnet *nnet)
This function affects components of child-classes of RandomComponent.
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
void Read(std::istream &is, bool binary)
void Register(OptionsItf *opts)
A templated class for reading objects sequentially from an archive or script file; see The Table conc...
GrammarFst is an FST that is 'stitched together' from multiple FSTs, that can recursively incorporate...
This is the "normal" lattice-generating decoder.
A class representing a vector.
NnetOptimizeOptions optimize_config
void Register(OptionsItf *opts)
double Elapsed() const
Returns time in seconds.
int32 frame_subsampling_factor
Config class for the CollapseModel function.