27     using namespace kaldi;
    30     typedef kaldi::int64 int64;
    33         "Train nnet3 neural network parameters with backprop and stochastic\n"    34         "gradient descent.  Minibatches are to be created by nnet3-merge-egs in\n"    35         "the input pipeline.  This training program is single-threaded (best to\n"    36         "use it with a GPU); see nnet3-train-parallel for multi-threaded training\n"    37         "that is better suited to CPUs.\n"    39         "Usage:  nnet3-train [options] <raw-model-in> <training-examples-in> <raw-model-out>\n"    42         "nnet3-train 1.raw 'ark:nnet3-merge-egs 1.egs ark:-|' 2.raw\n";
    45     bool binary_write = 
true;
    46     std::string use_gpu = 
"yes";
    50     po.Register(
"srand", &srand_seed, 
"Seed for random number generator ");
    51     po.Register(
"binary", &binary_write, 
"Write output in binary mode");
    52     po.Register(
"use-gpu", &use_gpu,
    53                 "yes|no|optional|wait, only has effect if compiled with CUDA");
    62     if (po.NumArgs() != 3) {
    68     CuDevice::Instantiate().SelectGpuId(use_gpu);
    71     std::string nnet_rxfilename = po.GetArg(1),
    72         examples_rspecifier = po.GetArg(2),
    73         nnet_wxfilename = po.GetArg(3);
    82     for (; !example_reader.Done(); example_reader.Next())
    83       trainer.Train(example_reader.Value());
    85     bool ok = trainer.PrintTotalStats();
    88     CuDevice::Instantiate().PrintProfile();
    91     KALDI_LOG << 
"Wrote model to " << nnet_wxfilename;
    93   } 
catch(
const std::exception &e) {
    94     std::cerr << e.what() << 
'\n';
 This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
void Register(OptionsItf *opts)
 
void ReadKaldiObject(const std::string &filename, Matrix< float > *m)
 
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
 
A templated class for reading objects sequentially from an archive or script file; see The Table conc...
 
void WriteKaldiObject(const C &c, const std::string &filename, bool binary)
 
This class is for single-threaded training of neural nets using standard objective functions such as ...
 
void RegisterCuAllocatorOptions(OptionsItf *po)