31 int main(
int argc,
char *argv[]) {
32 #ifndef KALDI_NO_PORTAUDIO 34 using namespace kaldi;
41 const int32 kDeltaOrder = 2;
43 const int32 kTimeout = 500;
45 const int32 kSampleFreq = 16000;
47 const int32 kPaRingSize = 32768;
49 const int32 kPaReportInt = 4;
52 "Decode speech, using microphone input(PortAudio)\n\n" 53 "Utterance segmentation is done on-the-fly.\n" 54 "Feature splicing/LDA transform is used, if the optional(last) argument " 56 "Otherwise delta/delta-delta(2-nd order) features are produced.\n\n" 57 "Usage: online-gmm-decode-faster [options] <model-in>" 58 "<fst-in> <word-symbol-table> <silence-phones> [<lda-matrix-in>]\n\n" 59 "Example: online-gmm-decode-faster --rt-min=0.3 --rt-max=0.5 " 60 "--max-active=4000 --beam=12.0 --acoustic-scale=0.0769 " 61 "model HCLG.fst words.txt '1:2:3:4:5' lda-matrix";
64 int32 cmn_window = 600, min_cmn_window = 100;
65 int32 right_context = 4, left_context = 4;
74 po.
Register(
"left-context", &left_context,
"Number of frames of left context");
75 po.
Register(
"right-context", &right_context,
"Number of frames of right context");
76 po.
Register(
"acoustic-scale", &acoustic_scale,
77 "Scaling factor for acoustic likelihoods");
78 po.
Register(
"cmn-window", &cmn_window,
79 "Number of feat. vectors used in the running average CMN calculation");
80 po.
Register(
"min-cmn-window", &min_cmn_window,
81 "Minumum CMN window used at start of decoding (adds " 82 "latency only at start)");
90 std::string model_rxfilename = po.
GetArg(1),
91 fst_rxfilename = po.
GetArg(2),
92 word_syms_filename = po.
GetArg(3),
93 silence_phones_str = po.
GetArg(4),
97 if (lda_mat_rspecifier !=
"") {
99 Input ki(lda_mat_rspecifier, &binary_in);
103 std::vector<int32> silence_phones;
105 KALDI_ERR <<
"Invalid silence-phones string " << silence_phones_str;
106 if (silence_phones.empty())
113 Input ki(model_rxfilename, &binary);
118 fst::SymbolTable *word_syms = NULL;
119 if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename)))
120 KALDI_ERR <<
"Could not read symbol table from file " 121 << word_syms_filename;
133 int32 window_size = right_context + left_context + 1;
136 silence_phones, trans_model);
137 VectorFst<LatticeArc> out_fst;
138 OnlinePaSource au_src(kTimeout, kSampleFreq, kPaRingSize, kPaReportInt);
139 Mfcc mfcc(mfcc_opts);
140 FeInput fe_input(&au_src, &mfcc,
141 frame_length * (kSampleFreq / 1000),
142 frame_shift * (kSampleFreq / 1000));
145 if (lda_mat_rspecifier !=
"") {
147 &cmn_input, lda_transform,
148 left_context, right_context);
151 opts.
order = kDeltaOrder;
161 bool partial_res =
false;
166 std::vector<int32> word_ids;
169 static_cast<vector<int32> *
>(0),
171 static_cast<LatticeArc::Weight*>(0));
177 KALDI_LOG <<
"No more features available from PortAudio!";
181 std::vector<int32> word_ids;
184 static_cast<vector<int32> *
>(0),
186 static_cast<LatticeArc::Weight*>(0));
189 partial_res = (word_ids.size() > 0);
194 delete feat_transform;
198 }
catch(
const std::exception& e) {
199 std::cerr << e.what();
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
bool PartialTraceback(fst::MutableFst< LatticeArc > *out_fst)
void Register(OptionsItf *opts, bool full)
MfccOptions contains basic options for computing MFCC features.
For an extended explanation of the framework of which grammar-fsts are a part, please see Support for...
bool SplitStringToIntegers(const std::string &full, const char *delim, bool omit_empty_strings, std::vector< I > *out)
Split a string (e.g.
void PrintUsage(bool print_command_line=false)
Prints the usage documentation [provided in the constructor].
void InitDecoding()
As a new alternative to Decode(), you can call InitDecoding and then (possibly multiple times) Advanc...
DecodeState Decode(DecodableInterface *decodable)
bool GetLinearSymbolSequence(const Fst< Arc > &fst, std::vector< I > *isymbols_out, std::vector< I > *osymbols_out, typename Arc::Weight *tot_weight_out)
GetLinearSymbolSequence gets the symbol sequence from a linear FST.
void Register(const std::string &name, bool *ptr, const std::string &doc)
void PrintPartialResult(const std::vector< int32 > &words, const fst::SymbolTable *word_syms, bool line_break)
void Read(std::istream &in, bool binary, bool add=false)
read from stream.
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
void FinishTraceBack(fst::MutableFst< LatticeArc > *fst_out)
FrameExtractionOptions frame_opts
void Read(std::istream &is, bool binary)
int Read(int argc, const char *const *argv)
Parses the command line options and fills the ParseOptions-registered variables.
std::string GetArg(int param) const
Returns one of the positional parameters; 1-based indexing for argc/argv compatibility.
int main(int argc, char *argv[])
int NumArgs() const
Number of positional parameters (c.f. argc-1).
fst::Fst< fst::StdArc > * ReadDecodeGraph(const std::string &filename)
void Register(OptionsItf *opts)
void Register(OptionsItf *opts)
This templated class is intended for offline feature extraction, i.e.
void Read(std::istream &in_stream, bool binary)
std::string GetOptArg(int param) const