All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
SubMatrix< Real > Singleton Reference

Sub-matrix representation. More...

#include <kaldi-matrix.h>

Inheritance diagram for SubMatrix< Real >:
Collaboration diagram for SubMatrix< Real >:

Public Member Functions

 SubMatrix (const MatrixBase< Real > &T, const MatrixIndexT ro, const MatrixIndexT r, const MatrixIndexT co, const MatrixIndexT c)
 
 SubMatrix (Real *data, MatrixIndexT num_rows, MatrixIndexT num_cols, MatrixIndexT stride)
 
 ~SubMatrix ()
 
 SubMatrix (const SubMatrix &other)
 This type of constructor is needed for Range() to work [in Matrix base class]. More...
 
- Public Member Functions inherited from MatrixBase< Real >
MatrixIndexT NumRows () const
 Returns number of rows (or zero for emtpy matrix). More...
 
MatrixIndexT NumCols () const
 Returns number of columns (or zero for emtpy matrix). More...
 
MatrixIndexT Stride () const
 Stride (distance in memory between each row). Will be >= NumCols. More...
 
size_t SizeInBytes () const
 Returns size in bytes of the data held by the matrix. More...
 
const Real * Data () const
 Gives pointer to raw data (const). More...
 
Real * Data ()
 Gives pointer to raw data (non-const). More...
 
Real * RowData (MatrixIndexT i)
 Returns pointer to data for one row (non-const) More...
 
const Real * RowData (MatrixIndexT i) const
 Returns pointer to data for one row (const) More...
 
Real & operator() (MatrixIndexT r, MatrixIndexT c)
 Indexing operator, non-const (only checks sizes if compiled with -DKALDI_PARANOID) More...
 
Real & Index (MatrixIndexT r, MatrixIndexT c)
 Indexing operator, provided for ease of debugging (gdb doesn't work with parenthesis operator). More...
 
const Real operator() (MatrixIndexT r, MatrixIndexT c) const
 Indexing operator, const (only checks sizes if compiled with -DKALDI_PARANOID) More...
 
void SetZero ()
 Sets matrix to zero. More...
 
void Set (Real)
 Sets all elements to a specific value. More...
 
void SetUnit ()
 Sets to zero, except ones along diagonal [for non-square matrices too]. More...
 
void SetRandn ()
 Sets to random values of a normal distribution. More...
 
void SetRandUniform ()
 Sets to numbers uniformly distributed on (0, 1) More...
 
template<typename OtherReal >
void CopyFromMat (const MatrixBase< OtherReal > &M, MatrixTransposeType trans=kNoTrans)
 Copy given matrix. (no resize is done). More...
 
void CopyFromMat (const CompressedMatrix &M)
 Copy from compressed matrix. More...
 
template<typename OtherReal >
void CopyFromSp (const SpMatrix< OtherReal > &M)
 Copy given spmatrix. (no resize is done). More...
 
template<typename OtherReal >
void CopyFromTp (const TpMatrix< OtherReal > &M, MatrixTransposeType trans=kNoTrans)
 Copy given tpmatrix. (no resize is done). More...
 
template<typename OtherReal >
void CopyFromMat (const CuMatrixBase< OtherReal > &M, MatrixTransposeType trans=kNoTrans)
 Copy from CUDA matrix. Implemented in ../cudamatrix/cu-matrix.h. More...
 
void CopyRowsFromVec (const VectorBase< Real > &v)
 This function has two modes of operation. More...
 
void CopyRowsFromVec (const CuVectorBase< Real > &v)
 This version of CopyRowsFromVec is implemented in ../cudamatrix/cu-vector.cc. More...
 
template<typename OtherReal >
void CopyRowsFromVec (const VectorBase< OtherReal > &v)
 
void CopyColsFromVec (const VectorBase< Real > &v)
 Copies vector into matrix, column-by-column. More...
 
void CopyColFromVec (const VectorBase< Real > &v, const MatrixIndexT col)
 Copy vector into specific column of matrix. More...
 
void CopyRowFromVec (const VectorBase< Real > &v, const MatrixIndexT row)
 Copy vector into specific row of matrix. More...
 
void CopyDiagFromVec (const VectorBase< Real > &v)
 Copy vector into diagonal of matrix. More...
 
const SubVector< Real > Row (MatrixIndexT i) const
 Return specific row of matrix [const]. More...
 
SubVector< Real > Row (MatrixIndexT i)
 Return specific row of matrix. More...
 
SubMatrix< Real > Range (const MatrixIndexT row_offset, const MatrixIndexT num_rows, const MatrixIndexT col_offset, const MatrixIndexT num_cols) const
 Return a sub-part of matrix. More...
 
SubMatrix< Real > RowRange (const MatrixIndexT row_offset, const MatrixIndexT num_rows) const
 
SubMatrix< Real > ColRange (const MatrixIndexT col_offset, const MatrixIndexT num_cols) const
 
Real Sum () const
 Returns sum of all elements in matrix. More...
 
Real Trace (bool check_square=true) const
 Returns trace of matrix. More...
 
Real Max () const
 Returns maximum element of matrix. More...
 
Real Min () const
 Returns minimum element of matrix. More...
 
void MulElements (const MatrixBase< Real > &A)
 Element by element multiplication with a given matrix. More...
 
void DivElements (const MatrixBase< Real > &A)
 Divide each element by the corresponding element of a given matrix. More...
 
void Scale (Real alpha)
 Multiply each element with a scalar value. More...
 
void Max (const MatrixBase< Real > &A)
 Set, element-by-element, *this = max(*this, A) More...
 
void Min (const MatrixBase< Real > &A)
 Set, element-by-element, *this = min(*this, A) More...
 
void MulColsVec (const VectorBase< Real > &scale)
 Equivalent to (*this) = (*this) * diag(scale). More...
 
void MulRowsVec (const VectorBase< Real > &scale)
 Equivalent to (*this) = diag(scale) * (*this). More...
 
void MulRowsGroupMat (const MatrixBase< Real > &src)
 Divide each row into src.NumCols() equal groups, and then scale i'th row's j'th group of elements by src(i, j). More...
 
Real LogDet (Real *det_sign=NULL) const
 Returns logdet of matrix. More...
 
void Invert (Real *log_det=NULL, Real *det_sign=NULL, bool inverse_needed=true)
 matrix inverse. More...
 
void InvertDouble (Real *LogDet=NULL, Real *det_sign=NULL, bool inverse_needed=true)
 matrix inverse [double]. More...
 
void InvertElements ()
 Inverts all the elements of the matrix. More...
 
void Transpose ()
 Transpose the matrix. More...
 
void CopyCols (const MatrixBase< Real > &src, const MatrixIndexT *indices)
 Copies column r from column indices[r] of src. More...
 
void CopyRows (const MatrixBase< Real > &src, const MatrixIndexT *indices)
 Copies row r from row indices[r] of src (does nothing As a special case, if indexes[i] == -1, sets row i to zero. More...
 
void AddCols (const MatrixBase< Real > &src, const MatrixIndexT *indices)
 Add column indices[r] of src to column r. More...
 
void CopyRows (const Real *const *src)
 Copies row r of this matrix from an array of floats at the location given by src[r]. More...
 
void CopyToRows (Real *const *dst) const
 Copies row r of this matrix to the array of floats at the location given by dst[r]. More...
 
void AddRows (Real alpha, const MatrixBase< Real > &src, const MatrixIndexT *indexes)
 Does for each row r, this.Row(r) += alpha * src.row(indexes[r]). More...
 
void AddRows (Real alpha, const Real *const *src)
 Does for each row r, this.Row(r) += alpha * src[r], treating src[r] as the beginning of a region of memory representing a vector of floats, of the same length as this.NumCols(). More...
 
void AddToRows (Real alpha, Real *const *dst) const
 For each row r of this matrix, adds it (times alpha) to the array of floats at the location given by dst[r]. More...
 
void AddToRows (Real alpha, const MatrixIndexT *indexes, MatrixBase< Real > *dst) const
 For each row i of *this, adds this->Row(i) to dst->Row(indexes(i)) if indexes(i) >= 0, else do nothing. More...
 
void ApplyFloor (Real floor_val)
 Applies floor to all matrix elements. More...
 
void ApplyCeiling (Real ceiling_val)
 Applies floor to all matrix elements. More...
 
void ApplyLog ()
 Calculates log of all the matrix elemnts. More...
 
void ApplyExp ()
 Exponentiate each of the elements. More...
 
void ApplyExpSpecial ()
 For each element x of the matrix, set it to (x < 0 ? exp(x) : x + 1). More...
 
void ApplyPow (Real power)
 Applies power to all matrix elements. More...
 
void ApplyPowAbs (Real power, bool include_sign=false)
 Apply power to the absolute value of each element. More...
 
void ApplyHeaviside ()
 Applies the Heaviside step function (x > 0 ? 1 : 0) to all matrix elements Note: in general you can make different choices for x = 0, but for now please leave it as it (i.e. More...
 
void Eig (MatrixBase< Real > *P, VectorBase< Real > *eigs_real, VectorBase< Real > *eigs_imag) const
 Eigenvalue Decomposition of a square NxN matrix into the form (*this) = P D P^{-1}. More...
 
bool Power (Real pow)
 The Power method attempts to take the matrix to a power using a method that works in general for fractional and negative powers. More...
 
void DestructiveSvd (VectorBase< Real > *s, MatrixBase< Real > *U, MatrixBase< Real > *Vt)
 Singular value decomposition Major limitations: For nonsquare matrices, we assume m>=n (NumRows >= NumCols), and we return the "skinny" Svd, i.e. More...
 
void Svd (VectorBase< Real > *s, MatrixBase< Real > *U, MatrixBase< Real > *Vt) const
 Compute SVD (*this) = U diag(s) Vt. More...
 
void Svd (VectorBase< Real > *s) const
 Compute SVD but only retain the singular values. More...
 
Real MinSingularValue () const
 Returns smallest singular value. More...
 
void TestUninitialized () const
 
Real Cond () const
 Returns condition number by computing Svd. More...
 
bool IsSymmetric (Real cutoff=1.0e-05) const
 Returns true if matrix is Symmetric. More...
 
bool IsDiagonal (Real cutoff=1.0e-05) const
 Returns true if matrix is Diagonal. More...
 
bool IsUnit (Real cutoff=1.0e-05) const
 Returns true if the matrix is all zeros, except for ones on diagonal. More...
 
bool IsZero (Real cutoff=1.0e-05) const
 Returns true if matrix is all zeros. More...
 
Real FrobeniusNorm () const
 Frobenius norm, which is the sqrt of sum of square elements. More...
 
bool ApproxEqual (const MatrixBase< Real > &other, float tol=0.01) const
 Returns true if ((*this)-other).FrobeniusNorm() <= tol * (*this).FrobeniusNorm(). More...
 
bool Equal (const MatrixBase< Real > &other) const
 Tests for exact equality. It's usually preferable to use ApproxEqual. More...
 
Real LargestAbsElem () const
 largest absolute value. More...
 
Real LogSumExp (Real prune=-1.0) const
 Returns log(sum(exp())) without exp overflow If prune > 0.0, it uses a pruning beam, discarding terms less than (max - prune). More...
 
Real ApplySoftMax ()
 Apply soft-max to the collection of all elements of the matrix and return normalizer (log sum of exponentials). More...
 
void Sigmoid (const MatrixBase< Real > &src)
 Set each element to the sigmoid of the corresponding element of "src". More...
 
void Heaviside (const MatrixBase< Real > &src)
 Sets each element to the Heaviside step function (x > 0 ? 1 : 0) of the corresponding element in "src". More...
 
void SoftHinge (const MatrixBase< Real > &src)
 Set each element to y = log(1 + exp(x)) More...
 
void GroupPnorm (const MatrixBase< Real > &src, Real power)
 Apply the function y(i) = (sum_{j = i*G}^{(i+1)*G-1} x_j^(power))^(1 / p). More...
 
void GroupPnormDeriv (const MatrixBase< Real > &input, const MatrixBase< Real > &output, Real power)
 Calculate derivatives for the GroupPnorm function above... More...
 
void GroupMax (const MatrixBase< Real > &src)
 Apply the function y(i) = (max_{j = i*G}^{(i+1)*G-1} x_j Requires src.NumRows() == this->NumRows() and src.NumCols() % this->NumCols() == 0. More...
 
void GroupMaxDeriv (const MatrixBase< Real > &input, const MatrixBase< Real > &output)
 Calculate derivatives for the GroupMax function above, where "input" is the input to the GroupMax function above (i.e. More...
 
void Tanh (const MatrixBase< Real > &src)
 Set each element to the tanh of the corresponding element of "src". More...
 
void DiffSigmoid (const MatrixBase< Real > &value, const MatrixBase< Real > &diff)
 
void DiffTanh (const MatrixBase< Real > &value, const MatrixBase< Real > &diff)
 
void SymPosSemiDefEig (VectorBase< Real > *s, MatrixBase< Real > *P, Real check_thresh=0.001)
 Uses Svd to compute the eigenvalue decomposition of a symmetric positive semi-definite matrix: (*this) = rP * diag(rS) * rP^T, with rP an orthogonal matrix so rP^{-1} = rP^T. More...
 
void Add (const Real alpha)
 Add a scalar to each element. More...
 
void AddToDiag (const Real alpha)
 Add a scalar to each diagonal element. More...
 
template<typename OtherReal >
void AddVecVec (const Real alpha, const VectorBase< OtherReal > &a, const VectorBase< OtherReal > &b)
 *this += alpha * a * b^T More...
 
template<typename OtherReal >
void AddVecToRows (const Real alpha, const VectorBase< OtherReal > &v)
 [each row of *this] += alpha * v More...
 
template<typename OtherReal >
void AddVecToCols (const Real alpha, const VectorBase< OtherReal > &v)
 [each col of *this] += alpha * v More...
 
void AddMat (const Real alpha, const MatrixBase< Real > &M, MatrixTransposeType transA=kNoTrans)
 *this += alpha * M [or M^T] More...
 
void AddSmat (Real alpha, const SparseMatrix< Real > &A, MatrixTransposeType trans=kNoTrans)
 *this += alpha * A [or A^T]. More...
 
void AddSmatMat (Real alpha, const SparseMatrix< Real > &A, MatrixTransposeType transA, const MatrixBase< Real > &B, Real beta)
 (*this) = alpha * op(A) * B + beta * (*this), where A is sparse. More...
 
void AddMatSmat (Real alpha, const MatrixBase< Real > &A, const SparseMatrix< Real > &B, MatrixTransposeType transB, Real beta)
 (*this) = alpha * A * op(B) + beta * (*this), where B is sparse and op(B) is either B or trans(B) depending on the 'transB' argument. More...
 
void SymAddMat2 (const Real alpha, const MatrixBase< Real > &M, MatrixTransposeType transA, Real beta)
 *this = beta * *this + alpha * M M^T, for symmetric matrices. More...
 
void AddDiagVecMat (const Real alpha, const VectorBase< Real > &v, const MatrixBase< Real > &M, MatrixTransposeType transM, Real beta=1.0)
 *this = beta * *this + alpha * diag(v) * M [or M^T]. More...
 
void AddMatDiagVec (const Real alpha, const MatrixBase< Real > &M, MatrixTransposeType transM, VectorBase< Real > &v, Real beta=1.0)
 *this = beta * *this + alpha * M [or M^T] * diag(v) The same as adding M but scaling each column M_j by v(j). More...
 
void AddMatMatElements (const Real alpha, const MatrixBase< Real > &A, const MatrixBase< Real > &B, const Real beta)
 *this = beta * *this + alpha * A .* B (.* element by element multiplication) More...
 
template<typename OtherReal >
void AddSp (const Real alpha, const SpMatrix< OtherReal > &S)
 *this += alpha * S More...
 
void AddMatMat (const Real alpha, const MatrixBase< Real > &A, MatrixTransposeType transA, const MatrixBase< Real > &B, MatrixTransposeType transB, const Real beta)
 
void SetMatMatDivMat (const MatrixBase< Real > &A, const MatrixBase< Real > &B, const MatrixBase< Real > &C)
 *this = a * b / c (by element; when c = 0, *this = a) More...
 
void AddMatSmat (const Real alpha, const MatrixBase< Real > &A, MatrixTransposeType transA, const MatrixBase< Real > &B, MatrixTransposeType transB, const Real beta)
 A version of AddMatMat specialized for when the second argument contains a lot of zeroes. More...
 
void AddSmatMat (const Real alpha, const MatrixBase< Real > &A, MatrixTransposeType transA, const MatrixBase< Real > &B, MatrixTransposeType transB, const Real beta)
 A version of AddMatMat specialized for when the first argument contains a lot of zeroes. More...
 
void AddMatMatMat (const Real alpha, const MatrixBase< Real > &A, MatrixTransposeType transA, const MatrixBase< Real > &B, MatrixTransposeType transB, const MatrixBase< Real > &C, MatrixTransposeType transC, const Real beta)
 this <– beta*this + alpha*A*B*C. More...
 
void AddSpMat (const Real alpha, const SpMatrix< Real > &A, const MatrixBase< Real > &B, MatrixTransposeType transB, const Real beta)
 this <– beta*this + alpha*SpA*B. More...
 
void AddTpMat (const Real alpha, const TpMatrix< Real > &A, MatrixTransposeType transA, const MatrixBase< Real > &B, MatrixTransposeType transB, const Real beta)
 this <– beta*this + alpha*A*B. More...
 
void AddMatSp (const Real alpha, const MatrixBase< Real > &A, MatrixTransposeType transA, const SpMatrix< Real > &B, const Real beta)
 this <– beta*this + alpha*A*B. More...
 
void AddSpMatSp (const Real alpha, const SpMatrix< Real > &A, const MatrixBase< Real > &B, MatrixTransposeType transB, const SpMatrix< Real > &C, const Real beta)
 this <– beta*this + alpha*A*B*C. More...
 
void AddMatTp (const Real alpha, const MatrixBase< Real > &A, MatrixTransposeType transA, const TpMatrix< Real > &B, MatrixTransposeType transB, const Real beta)
 this <– beta*this + alpha*A*B. More...
 
void AddTpTp (const Real alpha, const TpMatrix< Real > &A, MatrixTransposeType transA, const TpMatrix< Real > &B, MatrixTransposeType transB, const Real beta)
 this <– beta*this + alpha*A*B. More...
 
void AddSpSp (const Real alpha, const SpMatrix< Real > &A, const SpMatrix< Real > &B, const Real beta)
 this <– beta*this + alpha*A*B. More...
 
void CopyLowerToUpper ()
 Copy lower triangle to upper triangle (symmetrize) More...
 
void CopyUpperToLower ()
 Copy upper triangle to lower triangle (symmetrize) More...
 
void OrthogonalizeRows ()
 This function orthogonalizes the rows of a matrix using the Gram-Schmidt process. More...
 
void Read (std::istream &in, bool binary, bool add=false)
 stream read. More...
 
void Write (std::ostream &out, bool binary) const
 write to stream. More...
 
void LapackGesvd (VectorBase< Real > *s, MatrixBase< Real > *U, MatrixBase< Real > *Vt)
 
template<>
void AddVecVec (const float alpha, const VectorBase< float > &ra, const VectorBase< float > &rb)
 
template<>
void AddVecVec (const double alpha, const VectorBase< double > &ra, const VectorBase< double > &rb)
 
template<>
void AddVecVec (const float alpha, const VectorBase< float > &a, const VectorBase< float > &rb)
 
template<>
void AddVecVec (const double alpha, const VectorBase< double > &a, const VectorBase< double > &rb)
 
template<>
void CopyFromSp (const SpMatrix< float > &M)
 
template<>
void CopyFromSp (const SpMatrix< double > &M)
 

Private Member Functions

SubMatrix< Real > & operator= (const SubMatrix< Real > &other)
 Disallow assignment. More...
 

Additional Inherited Members

- Protected Member Functions inherited from MatrixBase< Real >
 MatrixBase (Real *data, MatrixIndexT cols, MatrixIndexT rows, MatrixIndexT stride)
 Initializer, callable only from child. More...
 
 MatrixBase ()
 Initializer, callable only from child. More...
 
 ~MatrixBase ()
 
Real * Data_workaround () const
 A workaround that allows SubMatrix to get a pointer to non-const data for const Matrix. More...
 
- Protected Attributes inherited from MatrixBase< Real >
Real * data_
 data memory area More...
 
MatrixIndexT num_cols_
 these atributes store the real matrix size as it is stored in memory including memalignment More...
 
MatrixIndexT num_rows_
 < Number of columns More...
 
MatrixIndexT stride_
 < Number of rows More...
 

Detailed Description

template<typename Real>
singleton kaldi::SubMatrix< Real >

Sub-matrix representation.

Can work with sub-parts of a matrix using this class. Note that SubMatrix is not very const-correct– it allows you to change the contents of a const Matrix. Be careful!

Definition at line 942 of file kaldi-matrix.h.

Constructor & Destructor Documentation

SubMatrix ( const MatrixBase< Real > &  T,
const MatrixIndexT  ro,
const MatrixIndexT  r,
const MatrixIndexT  co,
const MatrixIndexT  c 
)

Definition at line 1623 of file kaldi-matrix.cc.

References data_, MatrixBase< Real >::Data_workaround(), KALDI_ASSERT, MatrixBase< Real >::num_cols_, MatrixBase< Real >::num_rows_, and MatrixBase< Real >::Stride().

1627  {
1628  if (r == 0 || c == 0) {
1629  // we support the empty sub-matrix as a special case.
1630  KALDI_ASSERT(c == 0 && r == 0);
1631  this->data_ = NULL;
1632  this->num_cols_ = 0;
1633  this->num_rows_ = 0;
1634  this->stride_ = 0;
1635  return;
1636  }
1637  KALDI_ASSERT(static_cast<UnsignedMatrixIndexT>(ro) <
1638  static_cast<UnsignedMatrixIndexT>(M.num_rows_) &&
1639  static_cast<UnsignedMatrixIndexT>(co) <
1640  static_cast<UnsignedMatrixIndexT>(M.num_cols_) &&
1641  static_cast<UnsignedMatrixIndexT>(r) <=
1642  static_cast<UnsignedMatrixIndexT>(M.num_rows_ - ro) &&
1643  static_cast<UnsignedMatrixIndexT>(c) <=
1644  static_cast<UnsignedMatrixIndexT>(M.num_cols_ - co));
1645  // point to the begining of window
1646  MatrixBase<Real>::num_rows_ = r;
1647  MatrixBase<Real>::num_cols_ = c;
1648  MatrixBase<Real>::stride_ = M.Stride();
1649  MatrixBase<Real>::data_ = M.Data_workaround() +
1650  static_cast<size_t>(co) +
1651  static_cast<size_t>(ro) * static_cast<size_t>(M.Stride());
1652 }
MatrixIndexT stride_
< Number of rows
Definition: kaldi-matrix.h:770
Real * data_
data memory area
Definition: kaldi-matrix.h:762
uint64 data_
MatrixIndexT num_rows_
< Number of columns
Definition: kaldi-matrix.h:767
MatrixIndexT num_cols_
these atributes store the real matrix size as it is stored in memory including memalignment ...
Definition: kaldi-matrix.h:766
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:169
SubMatrix ( Real *  data,
MatrixIndexT  num_rows,
MatrixIndexT  num_cols,
MatrixIndexT  stride 
)

Definition at line 1656 of file kaldi-matrix.cc.

References KALDI_ASSERT, MatrixBase< Real >::num_cols_, MatrixBase< Real >::num_rows_, and MatrixBase< Real >::stride_.

1659  :
1660  MatrixBase<Real>(data, num_cols, num_rows, stride) { // caution: reversed order!
1661  if (data == NULL) {
1662  KALDI_ASSERT(num_rows * num_cols == 0);
1663  this->num_rows_ = 0;
1664  this->num_cols_ = 0;
1665  this->stride_ = 0;
1666  } else {
1667  KALDI_ASSERT(this->stride_ >= this->num_cols_);
1668  }
1669 }
MatrixIndexT stride_
< Number of rows
Definition: kaldi-matrix.h:770
MatrixIndexT num_rows_
< Number of columns
Definition: kaldi-matrix.h:767
MatrixIndexT num_cols_
these atributes store the real matrix size as it is stored in memory including memalignment ...
Definition: kaldi-matrix.h:766
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:169
~SubMatrix ( )
inline

Definition at line 962 of file kaldi-matrix.h.

962 {}
SubMatrix ( const SubMatrix< Real > &  other)
inline

This type of constructor is needed for Range() to work [in Matrix base class].

Cannot make it explicit.

Definition at line 966 of file kaldi-matrix.h.

966  :
967  MatrixBase<Real> (other.data_, other.num_cols_, other.num_rows_,
968  other.stride_) {}

Member Function Documentation

SubMatrix<Real>& operator= ( const SubMatrix< Real > &  other)
private

Disallow assignment.


The documentation for this singleton was generated from the following files: