All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
UpdatableComponent Class Referenceabstract

Class UpdatableComponent is a Component which has trainable parameters and contains some global parameters for stochastic gradient descent (learning rate, L2 regularization constant). More...

#include <nnet-component.h>

Inheritance diagram for UpdatableComponent:
Collaboration diagram for UpdatableComponent:

Public Member Functions

 UpdatableComponent (const UpdatableComponent &other)
 
void Init (BaseFloat learning_rate)
 
 UpdatableComponent (BaseFloat learning_rate)
 
virtual void SetZero (bool treat_as_gradient)=0
 Set parameters to zero, and if treat_as_gradient is true, we'll be treating this as a gradient so set the learning rate to 1 and make any other changes necessary (there's a variable we have to set for the MixtureProbComponent). More...
 
 UpdatableComponent ()
 
virtual ~UpdatableComponent ()
 
virtual BaseFloat DotProduct (const UpdatableComponent &other) const =0
 Here, "other" is a component of the same specific type. More...
 
virtual void PerturbParams (BaseFloat stddev)=0
 We introduce a new virtual function that only applies to class UpdatableComponent. More...
 
virtual void Scale (BaseFloat scale)=0
 This new virtual function scales the parameters by this amount. More...
 
virtual void Add (BaseFloat alpha, const UpdatableComponent &other)=0
 This new virtual function adds the parameters of another updatable component, times some constant, to the current parameters. More...
 
void SetLearningRate (BaseFloat lrate)
 Sets the learning rate of gradient descent. More...
 
BaseFloat LearningRate () const
 Gets the learning rate of gradient descent. More...
 
virtual std::string Info () const
 
virtual int32 GetParameterDim () const
 The following new virtual function returns the total dimension of the parameters in this class. More...
 
virtual void Vectorize (VectorBase< BaseFloat > *params) const
 Turns the parameters into vector form. More...
 
virtual void UnVectorize (const VectorBase< BaseFloat > &params)
 Converts the parameters from vector form. More...
 
- Public Member Functions inherited from Component
 Component ()
 
virtual std::string Type () const =0
 
virtual int32 Index () const
 Returns the index in the sequence of layers in the neural net; intended only to be used in debugging information. More...
 
virtual void SetIndex (int32 index)
 
virtual void InitFromString (std::string args)=0
 Initialize, typically from a line of a config file. More...
 
virtual int32 InputDim () const =0
 Get size of input vectors. More...
 
virtual int32 OutputDim () const =0
 Get size of output vectors. More...
 
virtual std::vector< int32 > Context () const
 Return a vector describing the temporal context this component requires for each frame of output, as a sorted list. More...
 
virtual void Propagate (const ChunkInfo &in_info, const ChunkInfo &out_info, const CuMatrixBase< BaseFloat > &in, CuMatrixBase< BaseFloat > *out) const =0
 Perform forward pass propagation Input->Output. More...
 
void Propagate (const ChunkInfo &in_info, const ChunkInfo &out_info, const CuMatrixBase< BaseFloat > &in, CuMatrix< BaseFloat > *out) const
 A non-virtual propagate function that first resizes output if necessary. More...
 
virtual void Backprop (const ChunkInfo &in_info, const ChunkInfo &out_info, const CuMatrixBase< BaseFloat > &in_value, const CuMatrixBase< BaseFloat > &out_value, const CuMatrixBase< BaseFloat > &out_deriv, Component *to_update, CuMatrix< BaseFloat > *in_deriv) const =0
 Perform backward pass propagation of the derivative, and also either update the model (if to_update == this) or update another model or compute the model derivative (otherwise). More...
 
virtual bool BackpropNeedsInput () const
 
virtual bool BackpropNeedsOutput () const
 
virtual ComponentCopy () const =0
 Copy component (deep copy). More...
 
virtual void Read (std::istream &is, bool binary)=0
 
virtual void Write (std::ostream &os, bool binary) const =0
 Write component to stream. More...
 
virtual ~Component ()
 

Protected Attributes

BaseFloat learning_rate_
 learning rate (0.0..0.01) More...
 

Private Member Functions

const UpdatableComponentoperator= (const UpdatableComponent &other)
 

Additional Inherited Members

- Static Public Member Functions inherited from Component
static ComponentReadNew (std::istream &is, bool binary)
 Read component from stream. More...
 
static ComponentNewFromString (const std::string &initializer_line)
 Initialize the Component from one line that will contain first the type, e.g. More...
 
static ComponentNewComponentOfType (const std::string &type)
 Return a new Component of the given type e.g. More...
 

Detailed Description

Class UpdatableComponent is a Component which has trainable parameters and contains some global parameters for stochastic gradient descent (learning rate, L2 regularization constant).

This is a base-class for Components with parameters.

Definition at line 279 of file nnet-component.h.

Constructor & Destructor Documentation

UpdatableComponent ( const UpdatableComponent other)
inline

Definition at line 281 of file nnet-component.h.

281  :
282  learning_rate_(other.learning_rate_){ }
BaseFloat learning_rate_
learning rate (0.0..0.01)
UpdatableComponent ( BaseFloat  learning_rate)
inline

Definition at line 287 of file nnet-component.h.

References UpdatableComponent::Init().

287  {
288  Init(learning_rate);
289  }
void Init(BaseFloat learning_rate)
UpdatableComponent ( )
inline

Definition at line 297 of file nnet-component.h.

297 : learning_rate_(0.001) { }
BaseFloat learning_rate_
learning rate (0.0..0.01)
virtual ~UpdatableComponent ( )
inlinevirtual

Definition at line 299 of file nnet-component.h.

299 { }

Member Function Documentation

virtual void Add ( BaseFloat  alpha,
const UpdatableComponent other 
)
pure virtual

This new virtual function adds the parameters of another updatable component, times some constant, to the current parameters.

Implemented in Convolutional1dComponent, BlockAffineComponent, and AffineComponent.

Referenced by Nnet::AddNnet(), and main().

virtual BaseFloat DotProduct ( const UpdatableComponent other) const
pure virtual

Here, "other" is a component of the same specific type.

This function computes the dot product in parameters, and is computed while automatically adjusting learning rates; typically, one of the two will actually contain the gradient.

Implemented in Convolutional1dComponent, BlockAffineComponent, and AffineComponent.

Referenced by Nnet::ComponentDotProducts(), kaldi::nnet2::ComputeObjfAndGradient(), FastNnetCombiner::ComputeObjfAndGradient(), FisherComputationClass::operator()(), and kaldi::nnet2::UnitTestGenericComponentInternal().

virtual int32 GetParameterDim ( ) const
inlinevirtual

The following new virtual function returns the total dimension of the parameters in this class.

E.g. used for L-BFGS update

Reimplemented in Convolutional1dComponent, BlockAffineComponent, and AffineComponent.

Definition at line 333 of file nnet-component.h.

References KALDI_ASSERT.

Referenced by Nnet::GetParameterDim(), main(), Nnet::UnVectorize(), and Nnet::Vectorize().

333 { KALDI_ASSERT(0); return 0; }
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:169
std::string Info ( ) const
virtual

Reimplemented from Component.

Reimplemented in Convolutional1dComponent, AffineComponentPreconditionedOnline, AffineComponentPreconditioned, and AffineComponent.

Definition at line 312 of file nnet-component.cc.

References Component::InputDim(), UpdatableComponent::LearningRate(), Component::OutputDim(), and Component::Type().

312  {
313  std::stringstream stream;
314  stream << Type() << ", input-dim=" << InputDim()
315  << ", output-dim=" << OutputDim() << ", learning-rate="
316  << LearningRate();
317  return stream.str();
318 }
virtual int32 InputDim() const =0
Get size of input vectors.
virtual int32 OutputDim() const =0
Get size of output vectors.
BaseFloat LearningRate() const
Gets the learning rate of gradient descent.
virtual std::string Type() const =0
const UpdatableComponent& operator= ( const UpdatableComponent other)
private
virtual void PerturbParams ( BaseFloat  stddev)
pure virtual

We introduce a new virtual function that only applies to class UpdatableComponent.

This is used in testing.

Implemented in Convolutional1dComponent, BlockAffineComponent, and AffineComponent.

Referenced by main(), and kaldi::nnet2::UnitTestGenericComponentInternal().

virtual void Scale ( BaseFloat  scale)
pure virtual

This new virtual function scales the parameters by this amount.

Implemented in Convolutional1dComponent, BlockAffineComponent, and AffineComponent.

Referenced by Nnet::AddNnet(), main(), NnetRescaler::RescaleComponent(), Nnet::Scale(), and Nnet::ScaleComponents().

void SetLearningRate ( BaseFloat  lrate)
inline
virtual void SetZero ( bool  treat_as_gradient)
pure virtual

Set parameters to zero, and if treat_as_gradient is true, we'll be treating this as a gradient so set the learning rate to 1 and make any other changes necessary (there's a variable we have to set for the MixtureProbComponent).

Implemented in Convolutional1dComponent, BlockAffineComponentPreconditioned, BlockAffineComponent, and AffineComponent.

Referenced by main(), and Nnet::SetZero().

virtual void UnVectorize ( const VectorBase< BaseFloat > &  params)
inlinevirtual

Converts the parameters from vector form.

Reimplemented in BlockAffineComponent, and AffineComponent.

Definition at line 340 of file nnet-component.h.

References KALDI_ASSERT.

Referenced by Nnet::UnVectorize().

340  {
341  KALDI_ASSERT(0);
342  }
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:169
virtual void Vectorize ( VectorBase< BaseFloat > *  params) const
inlinevirtual

Turns the parameters into vector form.

We put the vector form on the CPU, because in the kinds of situations where we do this, we'll tend to use too much memory for the GPU.

Reimplemented in BlockAffineComponent, and AffineComponent.

Definition at line 338 of file nnet-component.h.

References KALDI_ASSERT.

Referenced by main(), and Nnet::Vectorize().

338 { KALDI_ASSERT(0); }
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:169

Member Data Documentation

BaseFloat learning_rate_
protected

learning rate (0.0..0.01)

Definition at line 345 of file nnet-component.h.

Referenced by AffineComponentPreconditionedOnline::AffineComponentPreconditionedOnline(), AffineComponent::Copy(), AffineComponentPreconditioned::Copy(), AffineComponentPreconditionedOnline::Copy(), BlockAffineComponent::Copy(), BlockAffineComponentPreconditioned::Copy(), Convolutional1dComponent::Copy(), AffineComponentPreconditioned::GetScalingFactor(), AffineComponentPreconditionedOnline::GetScalingFactor(), UpdatableComponent::Init(), AffineComponent::InitFromString(), AffineComponentPreconditioned::InitFromString(), AffineComponentPreconditionedOnline::InitFromString(), BlockAffineComponent::InitFromString(), BlockAffineComponentPreconditioned::InitFromString(), Convolutional1dComponent::InitFromString(), UpdatableComponent::LearningRate(), AffineComponent::Read(), AffineComponentPreconditioned::Read(), AffineComponentPreconditionedOnline::Read(), BlockAffineComponent::Read(), BlockAffineComponentPreconditioned::Read(), Convolutional1dComponent::Read(), UpdatableComponent::SetLearningRate(), AffineComponentPreconditioned::Update(), AffineComponentPreconditionedOnline::Update(), BlockAffineComponentPreconditioned::Update(), Convolutional1dComponent::Update(), AffineComponent::UpdateSimple(), BlockAffineComponent::UpdateSimple(), AffineComponent::Write(), AffineComponentPreconditioned::Write(), AffineComponentPreconditionedOnline::Write(), BlockAffineComponent::Write(), BlockAffineComponentPreconditioned::Write(), and Convolutional1dComponent::Write().


The documentation for this class was generated from the following files: