All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages
DecodableAmNnetSimpleLooped Class Reference

#include <decodable-simple-looped.h>

Inheritance diagram for DecodableAmNnetSimpleLooped:
Collaboration diagram for DecodableAmNnetSimpleLooped:

Public Member Functions

 DecodableAmNnetSimpleLooped (const DecodableNnetSimpleLoopedInfo &info, const TransitionModel &trans_model, const MatrixBase< BaseFloat > &feats, const VectorBase< BaseFloat > *ivector=NULL, const MatrixBase< BaseFloat > *online_ivectors=NULL, int32 online_ivector_period=1)
 This constructor takes features as input, and you can either supply a single iVector input, estimated in batch-mode ('ivector'), or 'online' iVectors ('online_ivectors' and 'online_ivector_period', or none at all. More...
 
virtual BaseFloat LogLikelihood (int32 frame, int32 transition_id)
 Returns the log likelihood, which will be negated in the decoder. More...
 
virtual int32 NumFramesReady () const
 The call NumFramesReady() will return the number of frames currently available for this decodable object. More...
 
virtual int32 NumIndices () const
 Returns the number of states in the acoustic model (they will be indexed one-based, i.e. More...
 
virtual bool IsLastFrame (int32 frame) const
 Returns true if this is the last frame. More...
 
- Public Member Functions inherited from DecodableInterface
virtual ~DecodableInterface ()
 

Private Member Functions

 KALDI_DISALLOW_COPY_AND_ASSIGN (DecodableAmNnetSimpleLooped)
 

Private Attributes

DecodableNnetSimpleLooped decodable_nnet_
 
const TransitionModeltrans_model_
 

Detailed Description

Definition at line 267 of file decodable-simple-looped.h.

Constructor & Destructor Documentation

DecodableAmNnetSimpleLooped ( const DecodableNnetSimpleLoopedInfo info,
const TransitionModel trans_model,
const MatrixBase< BaseFloat > &  feats,
const VectorBase< BaseFloat > *  ivector = NULL,
const MatrixBase< BaseFloat > *  online_ivectors = NULL,
int32  online_ivector_period = 1 
)

This constructor takes features as input, and you can either supply a single iVector input, estimated in batch-mode ('ivector'), or 'online' iVectors ('online_ivectors' and 'online_ivector_period', or none at all.

Note: it stores references to all arguments to the constructor, so don't delete them till this goes out of scope.

Parameters
[in]infoThis helper class contains all the static pre-computed information this class needs, and contains a pointer to the neural net. If you want prior subtraction to be done, you should have initialized this with the constructor that takes class AmNnetSimple.
[in]trans_modelThe transition model to use. This takes care of the mapping from transition-id (which is an arg to LogLikelihood()) to pdf-id (which is used internally).
[in]featsA pointer to the input feature matrix; must be non-NULL. We
[in]ivectorIf you are using iVectors estimated in batch mode, a pointer to the iVector, else NULL.
[in]ivectorIf you are using iVectors estimated in batch mode, a pointer to the iVector, else NULL.
[in]online_ivectorsIf you are using iVectors estimated 'online' a pointer to the iVectors, else NULL.
[in]online_ivector_periodIf you are using iVectors estimated 'online' (i.e. if online_ivectors != NULL) gives the periodicity (in frames) with which the iVectors are estimated.

Definition at line 247 of file decodable-simple-looped.cc.

253  :
254  decodable_nnet_(info, feats, ivector, online_ivectors, online_ivector_period),
255  trans_model_(trans_model) { }

Member Function Documentation

virtual bool IsLastFrame ( int32  frame) const
inlinevirtual

Returns true if this is the last frame.

Frames are zero-based, so the first frame is zero. IsLastFrame(-1) will return false, unless the file is empty (which is a case that I'm not sure all the code will handle, so be careful). Caution: the behavior of this function in an online setting is being changed somewhat. In future it may return false in cases where we haven't yet decided to terminate decoding, but later true if we decide to terminate decoding. The plan in future is to rely more on NumFramesReady(), and in future, IsLastFrame() would always return false in an online-decoding setting, and would only return true in a decoding-from-matrix setting where we want to allow the last delta or LDA features to be flushed out for compatibility with the baseline setup.

Implements DecodableInterface.

Definition at line 313 of file decodable-simple-looped.h.

References KALDI_ASSERT, and DecodableAmNnetSimpleLooped::NumFramesReady().

313  {
314  KALDI_ASSERT(frame < NumFramesReady());
315  return (frame == NumFramesReady() - 1);
316  }
virtual int32 NumFramesReady() const
The call NumFramesReady() will return the number of frames currently available for this decodable obj...
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:169
KALDI_DISALLOW_COPY_AND_ASSIGN ( DecodableAmNnetSimpleLooped  )
private
BaseFloat LogLikelihood ( int32  frame,
int32  index 
)
virtual

Returns the log likelihood, which will be negated in the decoder.

The "frame" starts from zero. You should verify that IsLastFrame(frame-1) returns false before calling this.

Implements DecodableInterface.

Definition at line 257 of file decodable-simple-looped.cc.

References DecodableAmNnetSimpleLooped::decodable_nnet_, DecodableNnetSimpleLooped::GetOutput(), DecodableAmNnetSimpleLooped::trans_model_, and TransitionModel::TransitionIdToPdf().

258  {
259  int32 pdf_id = trans_model_.TransitionIdToPdf(transition_id);
260  return decodable_nnet_.GetOutput(frame, pdf_id);
261 }
int32 TransitionIdToPdf(int32 trans_id) const
BaseFloat GetOutput(int32 subsampled_frame, int32 pdf_id)
virtual int32 NumFramesReady ( ) const
inlinevirtual

The call NumFramesReady() will return the number of frames currently available for this decodable object.

This is for use in setups where you don't want the decoder to block while waiting for input. This is newly added as of Jan 2014, and I hope, going forward, to rely on this mechanism more than IsLastFrame to know when to stop decoding.

Reimplemented from DecodableInterface.

Definition at line 307 of file decodable-simple-looped.h.

References DecodableAmNnetSimpleLooped::decodable_nnet_, and DecodableNnetSimpleLooped::NumFrames().

Referenced by DecodableAmNnetSimpleLooped::IsLastFrame(), and main().

virtual int32 NumIndices ( ) const
inlinevirtual

Returns the number of states in the acoustic model (they will be indexed one-based, i.e.

from 1 to NumIndices(); this is for compatibility with OpenFst).

Implements DecodableInterface.

Definition at line 311 of file decodable-simple-looped.h.

References TransitionModel::NumTransitionIds(), and DecodableAmNnetSimpleLooped::trans_model_.

311 { return trans_model_.NumTransitionIds(); }
int32 NumTransitionIds() const
Returns the total number of transition-ids (note, these are one-based).

Member Data Documentation


The documentation for this class was generated from the following files: