20 #ifndef KALDI_NNET3_DECODABLE_SIMPLE_LOOPED_H_    21 #define KALDI_NNET3_DECODABLE_SIMPLE_LOOPED_H_    55       extra_left_context_initial(0),
    56       frame_subsampling_factor(1),
    59       debug_computation(false) { }
    63                  frame_subsampling_factor > 0 && frames_per_chunk > 0 &&
    64                  acoustic_scale > 0.0);
    68     opts->
Register(
"extra-left-context-initial", &extra_left_context_initial,
    69                    "Extra left context to use at the first frame of an utterance (note: "    70                    "this will just consist of repeats of the first frame, and should not "    71                    "usually be necessary.");
    72     opts->
Register(
"frame-subsampling-factor", &frame_subsampling_factor,
    73                    "Required if the frame-rate of the output (e.g. in 'chain' "    74                    "models) is less than the frame-rate of the original "    76     opts->
Register(
"acoustic-scale", &acoustic_scale,
    77                    "Scaling factor for acoustic log-likelihoods");
    78     opts->
Register(
"frames-per-chunk", &frames_per_chunk,
    79                    "Number of frames in each chunk that is separately evaluated "    80                    "by the neural net.  Measured before any subsampling, if the "    81                    "--frame-subsampling-factor options is used (i.e. counts "    82                    "input frames.  This is only advisory (may be rounded up "    84     opts->
Register(
"debug-computation", &debug_computation, 
"If true, turn on "    85                    "debug for the actual computation (very verbose!)");
    89     optimize_config.
Register(&optimization_opts);
    93     compute_config.
Register(&compute_opts);
   188                             int32 online_ivector_period = 1);
   202   void GetOutputForFrame(
int32 subsampled_frame,
   209     KALDI_ASSERT(subsampled_frame >= current_log_post_subsampled_offset_ &&
   210                  "Frames must be accessed in order.");
   211     while (subsampled_frame >= current_log_post_subsampled_offset_ +
   212                             current_log_post_.NumRows())
   214     return current_log_post_(subsampled_frame -
   215                              current_log_post_subsampled_offset_,
   229   void GetCurrentIvector(
int32 input_frame,
   233   int32 GetIvectorDim() 
const;
   302                               int32 online_ivector_period = 1);
   308     return decodable_nnet_.NumFrames();
   315     return (frame == NumFramesReady() - 1);
   329 #endif  // KALDI_NNET3_DECODABLE_SIMPLE_LOOPED_H_ 
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
void Register(OptionsItf *opts)
 
NnetComputation computation
 
const VectorBase< BaseFloat > * ivector_
 
int32 frame_subsampling_factor
 
DecodableInterface provides a link between the (acoustic-modeling and feature-processing) code and th...
 
Base class which provides matrix operations not involving resizing or allocation. ...
 
virtual int32 NumFramesReady() const
The call NumFramesReady() will return the number of frames currently available for this decodable obj...
 
const MatrixBase< BaseFloat > * online_ivector_feats_
 
int32 online_ivector_period_
 
int32 frames_right_context
 
NnetSimpleLoopedComputationOptions()
 
int32 extra_left_context_initial
 
int32 current_log_post_subsampled_offset_
 
#define KALDI_DISALLOW_COPY_AND_ASSIGN(type)
 
virtual int32 NumIndices() const
Returns the number of states in the acoustic model (they will be indexed one-based, i.e. 
 
const MatrixBase< BaseFloat > & feats_
 
virtual void Register(const std::string &name, bool *ptr, const std::string &doc)=0
 
const NnetSimpleLoopedComputationOptions & opts
 
int32 num_chunks_computed_
 
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
 
const TransitionModel & trans_model_
 
NnetOptimizeOptions optimize_config
 
int32 frames_left_context
 
Matrix< BaseFloat > current_log_post_
 
void Register(OptionsItf *opts)
 
DecodableNnetSimpleLooped decodable_nnet_
 
A class representing a vector. 
 
class NnetComputer is responsible for executing the computation described in the "computation" object...
 
#define KALDI_ASSERT(cond)
 
ComputationRequest request3
 
BaseFloat GetOutput(int32 subsampled_frame, int32 pdf_id)
 
Provides a vector abstraction class. 
 
virtual bool IsLastFrame(int32 frame) const
Returns true if this is the last frame. 
 
NnetComputeOptions compute_config
 
When you instantiate class DecodableNnetSimpleLooped, you should give it a const reference to this cl...
 
CuVector< BaseFloat > log_priors
 
void Register(OptionsItf *opts)
 
int32 num_subsampled_frames_
 
const DecodableNnetSimpleLoopedInfo & info_