21 #ifndef KALDI_NNET2_GET_FEATURE_TRANSFORM_H_ 22 #define KALDI_NNET2_GET_FEATURE_TRANSFORM_H_ 45 within_class_factor(0.001), max_singular_value(5.0) { }
48 opts->
Register(
"remove-offset", &remove_offset,
"If true, output an affine " 49 "transform that makes the projected data mean equal to zero.");
50 opts->
Register(
"dim", &dim,
"Dimension to project to with LDA");
51 opts->
Register(
"within-class-factor", &within_class_factor,
"If 1.0, do " 52 "conventional LDA where the within-class variance will be " 53 "unit in the projected space. May be set to less than 1.0, " 54 "which scales the features to have less variance, particularly " 55 "for dimensions where between-class variance is small. ");
56 opts->
Register(
"max-singular-value", &max_singular_value,
"If >0, maximum " 57 "allowed singular value of final transform (they are floored " 163 const std::vector<std::vector<int32> > &indexes,
168 const std::vector<int32> &indexes,
179 #endif // KALDI_NNET2_GET_FEATURE_TRANSFORM_H_ This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
Class for computing linear discriminant analysis (LDA) transform.
virtual void Register(const std::string &name, bool *ptr, const std::string &doc)=0
Packed symetric matrix class.