150     using namespace kaldi;
   153     typedef kaldi::int64 int64;
   156         "Get frame-by-frame examples of data for nnet3 neural network training.\n"   157         "This program is similar to nnet3-get-egs, but the targets here are "   158         "dense matrices instead of posteriors (sparse matrices).\n"   159         "This is useful when you want the targets to be continuous real-valued "   160         "with the neural network possibly trained with a quadratic objective\n"   162         "Usage:  nnet3-get-egs-dense-targets --num-targets=<n> [options] "   163         "<features-rspecifier> <targets-rspecifier> <egs-out>\n"   165         "An example [where $feats expands to the actual features]:\n"   166         "nnet-get-egs-dense-targets --num-targets=26 --left-context=12 \\\n"   167         "--right-context=9 --num-frames=8 \"$feats\" \\\n"   168         "\"ark:copy-matrix ark:exp/snrs/snr.1.ark ark:- |\"\n"   172     bool compress = 
true;
   173     int32 num_targets = -1, length_tolerance = 100,
   174         targets_length_tolerance = 2,  
   175         online_ivector_period = 1;
   180     std::string online_ivector_rspecifier;
   184     po.Register(
"compress", &compress, 
"If true, write egs with input features "   185                 "in compressed format (recommended).  This is "   186                 "only relevant if the features being read are un-compressed; "   187                 "if already compressed, we keep we same compressed format when "   189     po.Register(
"num-targets", &num_targets, 
"Output dimension in egs, "   190                 "only used to check targets have correct dim if supplied.");
   191     po.Register(
"ivectors", &online_ivector_rspecifier, 
"Alias for "   192                 "--online-ivectors option, for back compatibility");
   193     po.Register(
"online-ivectors", &online_ivector_rspecifier, 
"Rspecifier of "   194                 "ivector features, as a matrix.");
   195     po.Register(
"online-ivector-period", &online_ivector_period, 
"Number of "   196                 "frames between iVectors in matrices supplied to the "   197                 "--online-ivectors option");
   198     po.Register(
"length-tolerance", &length_tolerance, 
"Tolerance for "   199                 "difference in num-frames between feat and ivector matrices");
   200     po.Register(
"targets-length-tolerance", &targets_length_tolerance, 
   202                 "difference in num-frames (after subsampling) between "   203                 "feature and target matrices");
   208     if (po.NumArgs() != 3) {
   216     std::string feature_rspecifier = po.GetArg(1),
   217         matrix_rspecifier = po.GetArg(2),
   218         examples_wspecifier = po.GetArg(3);
   228         online_ivector_rspecifier);
   232     for (; !feat_reader.Done(); feat_reader.Next()) {
   233       std::string key = feat_reader.Key();
   235       if (!matrix_reader.HasKey(key)) {
   236         KALDI_WARN << 
"No target matrix for key " << key;
   241         if (!online_ivector_rspecifier.empty()) {
   242           if (!online_ivector_reader.HasKey(key)) {
   243             KALDI_WARN << 
"No iVectors for utterance " << key;
   249             online_ivector_feats = &(online_ivector_reader.Value(key));
   253         if (online_ivector_feats != NULL &&
   255                                     online_ivector_period)) > length_tolerance
   256              || online_ivector_feats->
NumRows() == 0)) {
   258                      << 
" and iVectors " << online_ivector_feats->
NumRows()
   259                      << 
"exceeds tolerance " << length_tolerance;
   264         if (!
ProcessFile(feats, online_ivector_feats, online_ivector_period,
   265                          target_matrix, key, compress, num_targets, 
   266                          targets_length_tolerance,
   267                          &utt_splitter, &example_writer))
   272       KALDI_WARN << num_err << 
" utterances had errors and could "   275     return utt_splitter.ExitStatus();
   276   } 
catch(
const std::exception &e) {
   277     std::cerr << e.what() << 
'\n';
 This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
This class is a wrapper that enables you to store a matrix in one of three forms: either as a Matrix<...
 
A templated class for writing objects to an archive or script file; see The Table concept...
 
Allows random access to a collection of objects in an archive or script file; see The Table concept...
 
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
 
static bool ProcessFile(const discriminative::SplitDiscriminativeSupervisionOptions &config, const TransitionModel &tmodel, const MatrixBase< BaseFloat > &feats, const MatrixBase< BaseFloat > *ivector_feats, int32 ivector_period, const discriminative::DiscriminativeSupervision &supervision, const std::string &utt_id, bool compress, UtteranceSplitter *utt_splitter, NnetDiscriminativeExampleWriter *example_writer)
 
A templated class for reading objects sequentially from an archive or script file; see The Table conc...
 
void Register(OptionsItf *po)
 
MatrixIndexT NumRows() const
Returns number of rows (or zero for empty matrix). 
 
MatrixIndexT NumRows() const
 
void ComputeDerived()
This function decodes 'num_frames_str' into 'num_frames', and ensures that the members of 'num_frames...