38 const std::string &utt_id,
41 int32 length_tolerance,
45 if (!utt_splitter->
LengthsMatch(utt_id, num_input_frames,
54 std::vector<ChunkTimeInfo> chunks;
59 KALDI_WARN <<
"Not producing egs for utterance " << utt_id
60 <<
" because it is too short: " 61 << num_input_frames <<
" frames.";
68 int32 frame_subsampling_factor =
71 for (
size_t c = 0; c < chunks.size(); c++) {
92 if (ivector_feats != NULL) {
96 start_frame + num_input_frames - 1),
97 ivector_frame_subsampled = ivector_frame / ivector_period;
98 if (ivector_frame_subsampled < 0)
99 ivector_frame_subsampled = 0;
100 if (ivector_frame_subsampled >= ivector_feats->
NumRows())
101 ivector_frame_subsampled = ivector_feats->
NumRows() - 1;
103 ivector.
Row(0).CopyFromVec(ivector_feats->
Row(ivector_frame_subsampled));
104 eg.
io.push_back(
NnetIo(
"ivector", 0, ivector));
109 int32 start_frame_subsampled = chunk.
first_frame / frame_subsampling_factor,
110 num_frames_subsampled = chunk.
num_frames / frame_subsampling_factor;
112 KALDI_ASSERT(start_frame_subsampled + num_frames_subsampled - 1 <
118 for (
int32 i = 0;
i < num_frames_subsampled;
i++) {
121 int32 t =
i + start_frame_subsampled;
130 eg.
io.push_back(
NnetIo(
"output", 0, targets_part, frame_subsampling_factor));
135 std::ostringstream os;
138 std::string key = os.str();
140 example_writer->
Write(key, eg);
148 int main(
int argc,
char *argv[]) {
150 using namespace kaldi;
153 typedef kaldi::int64 int64;
156 "Get frame-by-frame examples of data for nnet3 neural network training.\n" 157 "This program is similar to nnet3-get-egs, but the targets here are " 158 "dense matrices instead of posteriors (sparse matrices).\n" 159 "This is useful when you want the targets to be continuous real-valued " 160 "with the neural network possibly trained with a quadratic objective\n" 162 "Usage: nnet3-get-egs-dense-targets --num-targets=<n> [options] " 163 "<features-rspecifier> <targets-rspecifier> <egs-out>\n" 165 "An example [where $feats expands to the actual features]:\n" 166 "nnet-get-egs-dense-targets --num-targets=26 --left-context=12 \\\n" 167 "--right-context=9 --num-frames=8 \"$feats\" \\\n" 168 "\"ark:copy-matrix ark:exp/snrs/snr.1.ark ark:- |\"\n" 172 bool compress =
true;
173 int32 num_targets = -1, length_tolerance = 100,
174 targets_length_tolerance = 2,
175 online_ivector_period = 1;
180 std::string online_ivector_rspecifier;
184 po.
Register(
"compress", &compress,
"If true, write egs with input features " 185 "in compressed format (recommended). This is " 186 "only relevant if the features being read are un-compressed; " 187 "if already compressed, we keep we same compressed format when " 189 po.
Register(
"num-targets", &num_targets,
"Output dimension in egs, " 190 "only used to check targets have correct dim if supplied.");
191 po.
Register(
"ivectors", &online_ivector_rspecifier,
"Alias for " 192 "--online-ivectors option, for back compatibility");
193 po.
Register(
"online-ivectors", &online_ivector_rspecifier,
"Rspecifier of " 194 "ivector features, as a matrix.");
195 po.
Register(
"online-ivector-period", &online_ivector_period,
"Number of " 196 "frames between iVectors in matrices supplied to the " 197 "--online-ivectors option");
198 po.
Register(
"length-tolerance", &length_tolerance,
"Tolerance for " 199 "difference in num-frames between feat and ivector matrices");
200 po.
Register(
"targets-length-tolerance", &targets_length_tolerance,
202 "difference in num-frames (after subsampling) between " 203 "feature and target matrices");
216 std::string feature_rspecifier = po.
GetArg(1),
217 matrix_rspecifier = po.
GetArg(2),
218 examples_wspecifier = po.
GetArg(3);
228 online_ivector_rspecifier);
232 for (; !feat_reader.
Done(); feat_reader.
Next()) {
233 std::string key = feat_reader.
Key();
235 if (!matrix_reader.
HasKey(key)) {
236 KALDI_WARN <<
"No target matrix for key " << key;
241 if (!online_ivector_rspecifier.empty()) {
242 if (!online_ivector_reader.
HasKey(key)) {
243 KALDI_WARN <<
"No iVectors for utterance " << key;
249 online_ivector_feats = &(online_ivector_reader.
Value(key));
253 if (online_ivector_feats != NULL &&
255 online_ivector_period)) > length_tolerance
256 || online_ivector_feats->
NumRows() == 0)) {
258 <<
" and iVectors " << online_ivector_feats->
NumRows()
259 <<
"exceeds tolerance " << length_tolerance;
264 if (!
ProcessFile(feats, online_ivector_feats, online_ivector_period,
265 target_matrix, key, compress, num_targets,
266 targets_length_tolerance,
267 &utt_splitter, &example_writer))
272 KALDI_WARN << num_err <<
" utterances had errors and could " 276 }
catch(
const std::exception &e) {
277 std::cerr << e.what() <<
'\n';
NnetExample is the input data and corresponding label (or labels) for one or more frames of input...
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
This class is a wrapper that enables you to store a matrix in one of three forms: either as a Matrix<...
bool LengthsMatch(const std::string &utt, int32 utterance_length, int32 supervision_length, int32 length_tolerance=0) const
int32 frame_subsampling_factor
MatrixIndexT NumCols() const
Returns number of columns (or zero for empty matrix).
Base class which provides matrix operations not involving resizing or allocation. ...
void PrintUsage(bool print_command_line=false)
Prints the usage documentation [provided in the constructor].
int main(int argc, char *argv[])
A templated class for writing objects to an archive or script file; see The Table concept...
void Write(const std::string &key, const T &value) const
void Register(const std::string &name, bool *ptr, const std::string &doc)
Allows random access to a collection of objects in an archive or script file; see The Table concept...
void CopyFromVec(const VectorBase< Real > &v)
Copy data from another vector (must match own size).
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
const SubVector< Real > Row(MatrixIndexT i) const
Return specific row of matrix [const].
const T & Value(const std::string &key)
static bool ProcessFile(const discriminative::SplitDiscriminativeSupervisionOptions &config, const TransitionModel &tmodel, const MatrixBase< BaseFloat > &feats, const MatrixBase< BaseFloat > *ivector_feats, int32 ivector_period, const discriminative::DiscriminativeSupervision &supervision, const std::string &utt_id, bool compress, UtteranceSplitter *utt_splitter, NnetDiscriminativeExampleWriter *example_writer)
A templated class for reading objects sequentially from an archive or script file; see The Table conc...
void Register(OptionsItf *po)
int Read(int argc, const char *const *argv)
Parses the command line options and fills the ParseOptions-registered variables.
void ExtractRowRangeWithPadding(const GeneralMatrix &in, int32 row_offset, int32 num_rows, GeneralMatrix *out)
This function extracts a row-range of a GeneralMatrix and writes as a GeneralMatrix containing the sa...
void Compress()
Compresses any (input) features that are not sparse.
std::string GetArg(int param) const
Returns one of the positional parameters; 1-based indexing for argc/argv compatibility.
bool HasKey(const std::string &key)
const ExampleGenerationConfig & Config() const
int NumArgs() const
Number of positional parameters (c.f. argc-1).
#define KALDI_ASSERT(cond)
MatrixIndexT NumRows() const
Returns number of rows (or zero for empty matrix).
MatrixIndexT NumRows() const
void GetChunksForUtterance(int32 utterance_length, std::vector< ChunkTimeInfo > *chunk_info)
struct ChunkTimeInfo is used by class UtteranceSplitter to output information about how we split an u...
std::vector< NnetIo > io
"io" contains the input and output.
Represents a non-allocating general vector which can be defined as a sub-vector of higher-level vecto...
int32 RandInt(int32 min_val, int32 max_val, struct RandomState *state)
void ComputeDerived()
This function decodes 'num_frames_str' into 'num_frames', and ensures that the members of 'num_frames...