35 int main(
int argc, 
char *argv[]) {
    40     using namespace kaldi;
    43     using fst::SymbolTable;
    48         "Generate lattices using nnet3 neural net model.  This version supports\n"    49         "multiple decoding threads (using a shared decoding graph.)\n"    50         "Usage: nnet3-latgen-faster-parallel [options] <nnet-in> <fst-in|fsts-rspecifier> <features-rspecifier>"    51         " <lattice-wspecifier> [ <words-wspecifier> [<alignments-wspecifier>] ]\n"    52         "See also: nnet3-latgen-faster-batch (which supports GPUs)\n";
    56     bool allow_partial = 
false;
    61     std::string word_syms_filename;
    62     std::string ivector_rspecifier,
    63         online_ivector_rspecifier,
    65     int32 online_ivector_period = 0;
    69     po.
Register(
"word-symbol-table", &word_syms_filename,
    70                 "Symbol table for words [for debug output]");
    71     po.
Register(
"allow-partial", &allow_partial,
    72                 "If true, produce output even if end state was not reached.");
    73     po.
Register(
"ivectors", &ivector_rspecifier, 
"Rspecifier for "    74                 "iVectors as vectors (i.e. not estimated online); per utterance "    75                 "by default, or per speaker if you provide the --utt2spk option.");
    76     po.
Register(
"online-ivectors", &online_ivector_rspecifier, 
"Rspecifier for "    77                 "iVectors estimated online, as matrices.  If you supply this,"    78                 " you must set the --online-ivector-period option.");
    79     po.
Register(
"online-ivector-period", &online_ivector_period, 
"Number of frames "    80                 "between iVectors in matrices supplied to the --online-ivectors "    90     std::string model_in_filename = po.
GetArg(1),
    92         feature_rspecifier = po.
GetArg(3),
    93         lattice_wspecifier = po.
GetArg(4),
   102       Input ki(model_in_filename, &binary);
   113     if (! (determinize ? compact_lattice_writer.
Open(lattice_wspecifier)
   114            : lattice_writer.
Open(lattice_wspecifier)))
   115       KALDI_ERR << 
"Could not open table for writing lattices: "   116                  << lattice_wspecifier;
   119         online_ivector_rspecifier);
   121         ivector_rspecifier, utt2spk_rspecifier);
   126     fst::SymbolTable *word_syms = NULL;
   127     if (word_syms_filename != 
"")
   128       if (!(word_syms = fst::SymbolTable::ReadText(word_syms_filename)))
   129         KALDI_ERR << 
"Could not read symbol table from file "   130                    << word_syms_filename;
   132     double tot_like = 0.0;
   133     kaldi::int64 frame_count = 0;
   134     int num_success = 0, num_fail = 0;
   144         for (; !feature_reader.
Done(); feature_reader.
Next()) {
   145           std::string utt = feature_reader.
Key();
   147           if (features.NumRows() == 0) {
   148             KALDI_WARN << 
"Zero-length utterance: " << utt;
   154           if (!ivector_rspecifier.empty()) {
   155             if (!ivector_reader.
HasKey(utt)) {
   156               KALDI_WARN << 
"No iVector available for utterance " << utt;
   160               ivector = &ivector_reader.
Value(utt);
   163           if (!online_ivector_rspecifier.empty()) {
   164             if (!online_ivector_reader.
HasKey(utt)) {
   165               KALDI_WARN << 
"No online iVector available for utterance " << utt;
   169               online_ivectors = &online_ivector_reader.
Value(utt);
   178                   decodable_opts, trans_model, am_nnet,
   179                   features, ivector, online_ivectors,
   180                   online_ivector_period);
   184                   decoder, nnet_decodable, 
   186                   determinize, allow_partial, &alignment_writer, &words_writer,
   187                    &compact_lattice_writer, &lattice_writer,
   188                    &tot_like, &frame_count, &num_success, &num_fail, NULL);
   199       for (; !fst_reader.
Done(); fst_reader.
Next()) {
   200         std::string utt = fst_reader.
Key();
   201         if (!feature_reader.
HasKey(utt)) {
   202           KALDI_WARN << 
"Not decoding utterance " << utt
   203                      << 
" because no features available.";
   209           KALDI_WARN << 
"Zero-length utterance: " << utt;
   216         if (!ivector_rspecifier.empty()) {
   217           if (!ivector_reader.
HasKey(utt)) {
   218             KALDI_WARN << 
"No iVector available for utterance " << utt;
   222             ivector = &ivector_reader.
Value(utt);
   225         if (!online_ivector_rspecifier.empty()) {
   226           if (!online_ivector_reader.
HasKey(utt)) {
   227             KALDI_WARN << 
"No online iVector available for utterance " << utt;
   231             online_ivectors = &online_ivector_reader.
Value(utt);
   242                 decodable_opts, trans_model, am_nnet,
   243                 features, ivector, online_ivectors,
   244                 online_ivector_period);
   248                 decoder, nnet_decodable, 
   250                 determinize, allow_partial, &alignment_writer, &words_writer,
   251                 &compact_lattice_writer, &lattice_writer,
   252                 &tot_like, &frame_count, &num_success, &num_fail, NULL);
   260     kaldi::int64 input_frame_count =
   263     double elapsed = timer.
Elapsed();
   265               << 
"s: real-time factor assuming 100 feature frames/sec is "   266               << (sequencer_config.
num_threads * elapsed * 100.0 /
   268     KALDI_LOG << 
"Done " << num_success << 
" utterances, failed for "   270     KALDI_LOG << 
"Overall log-likelihood per frame is "   271               << (tot_like / frame_count) << 
" over "   272               << frame_count << 
" frames.";
   275     if (num_success != 0) 
return 0;
   277   } 
catch(
const std::exception &e) {
   278     std::cerr << e.what();
 int main(int argc, char *argv[])
 
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
void CollapseModel(const CollapseModelConfig &config, Nnet *nnet)
This function modifies the neural net for efficiency, in a way that suitable to be done in test time...
 
bool Open(const std::string &wspecifier)
 
DecodableInterface provides a link between the (acoustic-modeling and feature-processing) code and th...
 
Fst< StdArc > * ReadFstKaldiGeneric(std::string rxfilename, bool throw_on_err)
 
void Run(C *c)
This function takes ownership of the pointer "c", and will delete it in the same sequence as Run was ...
 
void PrintUsage(bool print_command_line=false)
Prints the usage documentation [provided in the constructor]. 
 
This class is for when you are reading something in random access, but it may actually be stored per-...
 
void SetBatchnormTestMode(bool test_mode, Nnet *nnet)
This function affects only components of type BatchNormComponent. 
 
A templated class for writing objects to an archive or script file; see The Table concept...
 
const Nnet & GetNnet() const
 
void Read(std::istream &is, bool binary)
 
void Register(const std::string &name, bool *ptr, const std::string &doc)
 
RspecifierType ClassifyRspecifier(const std::string &rspecifier, std::string *rxfilename, RspecifierOptions *opts)
 
This file contains some miscellaneous functions dealing with class Nnet. 
 
Allows random access to a collection of objects in an archive or script file; see The Table concept...
 
void SetDropoutTestMode(bool test_mode, Nnet *nnet)
This function affects components of child-classes of RandomComponent. 
 
This class basically does the same job as the function DecodeUtteranceLatticeFaster, but in a way that allows us to build a multi-threaded command line program more easily. 
 
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
 
const T & Value(const std::string &key)
 
void Read(std::istream &is, bool binary)
 
void Register(OptionsItf *opts)
 
A templated class for reading objects sequentially from an archive or script file; see The Table conc...
 
int Read(int argc, const char *const *argv)
Parses the command line options and fills the ParseOptions-registered variables. 
 
std::string GetArg(int param) const
Returns one of the positional parameters; 1-based indexing for argc/argv compatibility. 
 
bool HasKey(const std::string &key)
 
This is the "normal" lattice-generating decoder. 
 
int NumArgs() const
Number of positional parameters (c.f. argc-1). 
 
A class representing a vector. 
 
MatrixIndexT NumRows() const
Returns number of rows (or zero for empty matrix). 
 
LatticeFasterDecoderTpl< fst::StdFst, decoder::StdToken > LatticeFasterDecoder
 
const T & Value(const std::string &key)
 
void Register(OptionsItf *opts)
 
double Elapsed() const
Returns time in seconds. 
 
int32 frame_subsampling_factor
 
std::string GetOptArg(int param) const
 
void Register(OptionsItf *opts)
 
Config class for the CollapseModel function.