AffineComponent Class Reference

#include <nnet-simple-component.h>

Inheritance diagram for AffineComponent:
Collaboration diagram for AffineComponent:

Public Member Functions

virtual int32 InputDim () const
 Returns input-dimension of this component. More...
 
virtual int32 OutputDim () const
 Returns output-dimension of this component. More...
 
BaseFloat OrthonormalConstraint () const
 
virtual std::string Info () const
 Returns some text-form information about this component, for diagnostics. More...
 
virtual void InitFromConfig (ConfigLine *cfl)
 Initialize, from a ConfigLine object. More...
 
 AffineComponent ()
 
virtual std::string Type () const
 Returns a string such as "SigmoidComponent", describing the type of the object. More...
 
virtual int32 Properties () const
 Return bitmask of the component's properties. More...
 
virtual void * Propagate (const ComponentPrecomputedIndexes *indexes, const CuMatrixBase< BaseFloat > &in, CuMatrixBase< BaseFloat > *out) const
 Propagate function. More...
 
virtual void Backprop (const std::string &debug_info, const ComponentPrecomputedIndexes *indexes, const CuMatrixBase< BaseFloat > &in_value, const CuMatrixBase< BaseFloat > &, const CuMatrixBase< BaseFloat > &out_deriv, void *memo, Component *to_update, CuMatrixBase< BaseFloat > *in_deriv) const
 Backprop function; depending on which of the arguments 'to_update' and 'in_deriv' are non-NULL, this can compute input-data derivatives and/or perform model update. More...
 
virtual void Read (std::istream &is, bool binary)
 Read function (used after we know the type of the Component); accepts input that is missing the token that describes the component type, in case it has already been consumed. More...
 
virtual void Write (std::ostream &os, bool binary) const
 Write component to stream. More...
 
virtual ComponentCopy () const
 Copies component (deep copy). More...
 
virtual void Scale (BaseFloat scale)
 This virtual function when called on – an UpdatableComponent scales the parameters by "scale" when called by an UpdatableComponent. More...
 
virtual void Add (BaseFloat alpha, const Component &other)
 This virtual function when called by – an UpdatableComponent adds the parameters of another updatable component, times some constant, to the current parameters. More...
 
virtual void PerturbParams (BaseFloat stddev)
 This function is to be used in testing. More...
 
virtual BaseFloat DotProduct (const UpdatableComponent &other) const
 Computes dot-product between parameters of two instances of a Component. More...
 
virtual int32 NumParameters () const
 The following new virtual function returns the total dimension of the parameters in this class. More...
 
virtual void Vectorize (VectorBase< BaseFloat > *params) const
 Turns the parameters into vector form. More...
 
virtual void UnVectorize (const VectorBase< BaseFloat > &params)
 Converts the parameters from vector form. More...
 
virtual void SetParams (const CuVectorBase< BaseFloat > &bias, const CuMatrixBase< BaseFloat > &linear)
 
const CuVector< BaseFloat > & BiasParams () const
 
CuVector< BaseFloat > & BiasParams ()
 
const CuMatrix< BaseFloat > & LinearParams () const
 
CuMatrix< BaseFloat > & LinearParams ()
 
 AffineComponent (const AffineComponent &other)
 
 AffineComponent (const CuMatrixBase< BaseFloat > &linear_params, const CuVectorBase< BaseFloat > &bias_params, BaseFloat learning_rate)
 
virtual void Resize (int32 input_dim, int32 output_dim)
 
void Init (int32 input_dim, int32 output_dim, BaseFloat param_stddev, BaseFloat bias_stddev)
 
- Public Member Functions inherited from UpdatableComponent
 UpdatableComponent (const UpdatableComponent &other)
 
 UpdatableComponent ()
 
virtual ~UpdatableComponent ()
 
virtual void SetUnderlyingLearningRate (BaseFloat lrate)
 Sets the learning rate of gradient descent- gets multiplied by learning_rate_factor_. More...
 
virtual void SetActualLearningRate (BaseFloat lrate)
 Sets the learning rate directly, bypassing learning_rate_factor_. More...
 
virtual void SetAsGradient ()
 Sets is_gradient_ to true and sets learning_rate_ to 1, ignoring learning_rate_factor_. More...
 
virtual BaseFloat LearningRateFactor ()
 
virtual void SetLearningRateFactor (BaseFloat lrate_factor)
 
void SetUpdatableConfigs (const UpdatableComponent &other)
 
virtual void FreezeNaturalGradient (bool freeze)
 freezes/unfreezes NaturalGradient updates, if applicable (to be overriden by components that use Natural Gradient). More...
 
BaseFloat LearningRate () const
 Gets the learning rate to be used in gradient descent. More...
 
BaseFloat MaxChange () const
 Returns the per-component max-change value, which is interpreted as the maximum change (in l2 norm) in parameters that is allowed per minibatch for this component. More...
 
void SetMaxChange (BaseFloat max_change)
 
BaseFloat L2Regularization () const
 Returns the l2 regularization constant, which may be set in any updatable component (usually from the config file). More...
 
void SetL2Regularization (BaseFloat a)
 
- Public Member Functions inherited from Component
virtual void StoreStats (const CuMatrixBase< BaseFloat > &in_value, const CuMatrixBase< BaseFloat > &out_value, void *memo)
 This function may store stats on average activation values, and for some component types, the average value of the derivative of the nonlinearity. More...
 
virtual void ZeroStats ()
 Components that provide an implementation of StoreStats should also provide an implementation of ZeroStats(), to set those stats to zero. More...
 
virtual void GetInputIndexes (const MiscComputationInfo &misc_info, const Index &output_index, std::vector< Index > *desired_indexes) const
 This function only does something interesting for non-simple Components. More...
 
virtual bool IsComputable (const MiscComputationInfo &misc_info, const Index &output_index, const IndexSet &input_index_set, std::vector< Index > *used_inputs) const
 This function only does something interesting for non-simple Components, and it exists to make it possible to manage optionally-required inputs. More...
 
virtual void ReorderIndexes (std::vector< Index > *input_indexes, std::vector< Index > *output_indexes) const
 This function only does something interesting for non-simple Components. More...
 
virtual ComponentPrecomputedIndexesPrecomputeIndexes (const MiscComputationInfo &misc_info, const std::vector< Index > &input_indexes, const std::vector< Index > &output_indexes, bool need_backprop) const
 This function must return NULL for simple Components. More...
 
virtual void DeleteMemo (void *memo) const
 This virtual function only needs to be overwritten by Components that return a non-NULL memo from their Propagate() function. More...
 
virtual void ConsolidateMemory ()
 This virtual function relates to memory management, and avoiding fragmentation. More...
 
 Component ()
 
virtual ~Component ()
 

Protected Member Functions

void Init (std::string matrix_filename)
 
virtual void Update (const std::string &debug_info, const CuMatrixBase< BaseFloat > &in_value, const CuMatrixBase< BaseFloat > &out_deriv)
 
virtual void UpdateSimple (const CuMatrixBase< BaseFloat > &in_value, const CuMatrixBase< BaseFloat > &out_deriv)
 
const AffineComponentoperator= (const AffineComponent &other)
 
- Protected Member Functions inherited from UpdatableComponent
void InitLearningRatesFromConfig (ConfigLine *cfl)
 
std::string ReadUpdatableCommon (std::istream &is, bool binary)
 
void WriteUpdatableCommon (std::ostream &is, bool binary) const
 

Protected Attributes

CuMatrix< BaseFloatlinear_params_
 
CuVector< BaseFloatbias_params_
 
BaseFloat orthonormal_constraint_
 
- Protected Attributes inherited from UpdatableComponent
BaseFloat learning_rate_
 learning rate (typically 0.0..0.01) More...
 
BaseFloat learning_rate_factor_
 learning rate factor (normally 1.0, but can be set to another < value so that when < you call SetLearningRate(), that value will be scaled by this factor. More...
 
BaseFloat l2_regularize_
 L2 regularization constant. More...
 
bool is_gradient_
 True if this component is to be treated as a gradient rather than as parameters. More...
 
BaseFloat max_change_
 configuration value for imposing max-change More...
 

Friends

class NaturalGradientAffineComponent
 

Additional Inherited Members

- Static Public Member Functions inherited from Component
static ComponentReadNew (std::istream &is, bool binary)
 Read component from stream (works out its type). Dies on error. More...
 
static ComponentNewComponentOfType (const std::string &type)
 Returns a new Component of the given type e.g. More...
 

Detailed Description

Definition at line 406 of file nnet-simple-component.h.

Constructor & Destructor Documentation

◆ AffineComponent() [1/3]

AffineComponent ( )
inline

Definition at line 416 of file nnet-simple-component.h.

Referenced by AffineComponent::Copy().

416 : orthonormal_constraint_(0.0) { } // use Init to really initialize.

◆ AffineComponent() [2/3]

AffineComponent ( const AffineComponent other)
explicit

Definition at line 1125 of file nnet-simple-component.cc.

1125  :
1126  UpdatableComponent(component),
1127  linear_params_(component.linear_params_),
1128  bias_params_(component.bias_params_),
1129  orthonormal_constraint_(component.orthonormal_constraint_) { }
CuMatrix< BaseFloat > linear_params_

◆ AffineComponent() [3/3]

AffineComponent ( const CuMatrixBase< BaseFloat > &  linear_params,
const CuVectorBase< BaseFloat > &  bias_params,
BaseFloat  learning_rate 
)

Definition at line 1131 of file nnet-simple-component.cc.

References CuVectorBase< Real >::Dim(), KALDI_ASSERT, CuMatrixBase< Real >::NumRows(), and UpdatableComponent::SetUnderlyingLearningRate().

1133  :
1134  linear_params_(linear_params),
1135  bias_params_(bias_params),
1137  SetUnderlyingLearningRate(learning_rate);
1138  KALDI_ASSERT(linear_params.NumRows() == bias_params.Dim()&&
1139  bias_params.Dim() != 0);
1140 }
CuMatrix< BaseFloat > linear_params_
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:185
virtual void SetUnderlyingLearningRate(BaseFloat lrate)
Sets the learning rate of gradient descent- gets multiplied by learning_rate_factor_.

Member Function Documentation

◆ Add()

void Add ( BaseFloat  alpha,
const Component other 
)
virtual

This virtual function when called by – an UpdatableComponent adds the parameters of another updatable component, times some constant, to the current parameters.

– a NonlinearComponent (or another component that stores stats, like BatchNormComponent)– it relates to adding stats. Otherwise it will normally do nothing.

Reimplemented from Component.

Reimplemented in NaturalGradientAffineComponent.

Definition at line 1117 of file nnet-simple-component.cc.

References AffineComponent::bias_params_, KALDI_ASSERT, and AffineComponent::linear_params_.

1117  {
1118  const AffineComponent *other =
1119  dynamic_cast<const AffineComponent*>(&other_in);
1120  KALDI_ASSERT(other != NULL);
1121  linear_params_.AddMat(alpha, other->linear_params_);
1122  bias_params_.AddVec(alpha, other->bias_params_);
1123 }
CuMatrix< BaseFloat > linear_params_
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:185

◆ Backprop()

void Backprop ( const std::string &  debug_info,
const ComponentPrecomputedIndexes indexes,
const CuMatrixBase< BaseFloat > &  in_value,
const CuMatrixBase< BaseFloat > &  out_value,
const CuMatrixBase< BaseFloat > &  out_deriv,
void *  memo,
Component to_update,
CuMatrixBase< BaseFloat > *  in_deriv 
) const
virtual

Backprop function; depending on which of the arguments 'to_update' and 'in_deriv' are non-NULL, this can compute input-data derivatives and/or perform model update.

Parameters
[in]debug_infoThe component name, to be printed out in any warning messages.
[in]indexesA pointer to some information output by this class's PrecomputeIndexes function (will be NULL for simple components, i.e. those that don't do things like splicing).
[in]in_valueThe matrix that was given as input to the Propagate function. Will be ignored (and may be empty) if Properties()&kBackpropNeedsInput == 0.
[in]out_valueThe matrix that was output from the Propagate function. Will be ignored (and may be empty) if Properties()&kBackpropNeedsOutput == 0
[in]out_derivThe derivative at the output of this component.
[in]memoThis will normally be NULL, but for component types that set the flag kUsesMemo, this will be the return value of the Propagate() function that corresponds to this Backprop() function. Ownership of any pointers is not transferred to the Backprop function; DeleteMemo() will be called to delete it.
[out]to_updateIf model update is desired, the Component to be updated, else NULL. Does not have to be identical to this. If supplied, you can assume that to_update->Properties() & kUpdatableComponent is nonzero.
[out]in_derivThe derivative at the input of this component, if needed (else NULL). If Properties()&kBackpropInPlace, may be the same matrix as out_deriv. If Properties()&kBackpropAdds, this is added to by the Backprop routine, else it is set. The component code chooses which mode to work in, based on convenience.

Implements Component.

Definition at line 1260 of file nnet-simple-component.cc.

References CuMatrixBase< Real >::AddMatMat(), UpdatableComponent::is_gradient_, kaldi::kNoTrans, AffineComponent::linear_params_, NVTX_RANGE, AffineComponent::Update(), and AffineComponent::UpdateSimple().

1267  {
1268  NVTX_RANGE("AffineComponent::Backprop");
1269  AffineComponent *to_update = dynamic_cast<AffineComponent*>(to_update_in);
1270 
1271  // Propagate the derivative back to the input.
1272  // add with coefficient 1.0 since property kBackpropAdds is true.
1273  // If we wanted to add with coefficient 0.0 we'd need to zero the
1274  // in_deriv, in case of infinities.
1275  if (in_deriv)
1276  in_deriv->AddMatMat(1.0, out_deriv, kNoTrans, linear_params_, kNoTrans,
1277  1.0);
1278 
1279  if (to_update != NULL) {
1280  // Next update the model (must do this 2nd so the derivatives we propagate
1281  // are accurate, in case this == to_update_in.)
1282  if (to_update->is_gradient_)
1283  to_update->UpdateSimple(in_value, out_deriv);
1284  else // the call below is to a virtual function that may be re-implemented
1285  to_update->Update(debug_info, in_value, out_deriv); // by child classes.
1286  }
1287 }
CuMatrix< BaseFloat > linear_params_
#define NVTX_RANGE(name)
Definition: cu-common.h:143

◆ BiasParams() [1/2]

◆ BiasParams() [2/2]

CuVector<BaseFloat>& BiasParams ( )
inline

Definition at line 456 of file nnet-simple-component.h.

456 { return bias_params_; }

◆ Copy()

Component * Copy ( ) const
virtual

Copies component (deep copy).

Implements Component.

Reimplemented in NaturalGradientAffineComponent.

Definition at line 1173 of file nnet-simple-component.cc.

References AffineComponent::AffineComponent().

Referenced by ModelCollapser::CollapseComponentsScale().

1173  {
1174  AffineComponent *ans = new AffineComponent(*this);
1175  return ans;
1176 }

◆ DotProduct()

BaseFloat DotProduct ( const UpdatableComponent other) const
virtual

Computes dot-product between parameters of two instances of a Component.

Can be used for computing parameter-norm of an UpdatableComponent.

Implements UpdatableComponent.

Definition at line 1178 of file nnet-simple-component.cc.

References AffineComponent::bias_params_, kaldi::kTrans, AffineComponent::linear_params_, kaldi::TraceMatMat(), and kaldi::VecVec().

1178  {
1179  const AffineComponent *other =
1180  dynamic_cast<const AffineComponent*>(&other_in);
1181  return TraceMatMat(linear_params_, other->linear_params_, kTrans)
1182  + VecVec(bias_params_, other->bias_params_);
1183 }
Real TraceMatMat(const MatrixBase< Real > &A, const MatrixBase< Real > &B, MatrixTransposeType trans)
We need to declare this here as it will be a friend function.
CuMatrix< BaseFloat > linear_params_
Real VecVec(const VectorBase< Real > &a, const VectorBase< Real > &b)
Returns dot product between v1 and v2.
Definition: kaldi-vector.cc:37

◆ Info()

std::string Info ( ) const
virtual

Returns some text-form information about this component, for diagnostics.

Starts with the type of the component. E.g. "SigmoidComponent dim=900", although most components will have much more info.

Reimplemented from UpdatableComponent.

Reimplemented in NaturalGradientAffineComponent.

Definition at line 1159 of file nnet-simple-component.cc.

References AffineComponent::bias_params_, kaldi::GetVerboseLevel(), UpdatableComponent::Info(), AffineComponent::linear_params_, AffineComponent::orthonormal_constraint_, and kaldi::nnet3::PrintParameterStats().

Referenced by NaturalGradientAffineComponent::Info().

1159  {
1160  std::ostringstream stream;
1161  stream << UpdatableComponent::Info();
1162  if (orthonormal_constraint_ != 0.0)
1163  stream << ", orthonormal-constraint=" << orthonormal_constraint_;
1164  PrintParameterStats(stream, "linear-params", linear_params_,
1165  false, // include_mean
1166  true, // include_row_norms
1167  true, // include_column_norms
1168  GetVerboseLevel() >= 2); // include_singular_values
1169  PrintParameterStats(stream, "bias", bias_params_, true);
1170  return stream.str();
1171 }
int32 GetVerboseLevel()
Get verbosity level, usually set via command line &#39;–verbose=&#39; switch.
Definition: kaldi-error.h:60
CuMatrix< BaseFloat > linear_params_
virtual std::string Info() const
Returns some text-form information about this component, for diagnostics.
void PrintParameterStats(std::ostringstream &os, const std::string &name, const CuVectorBase< BaseFloat > &params, bool include_mean)
Print to &#39;os&#39; some information about the mean and standard deviation of some parameters, used in Info() functions in nnet-simple-component.cc.
Definition: nnet-parse.cc:157

◆ Init() [1/2]

void Init ( int32  input_dim,
int32  output_dim,
BaseFloat  param_stddev,
BaseFloat  bias_stddev 
)

Definition at line 1185 of file nnet-simple-component.cc.

References AffineComponent::bias_params_, KALDI_ASSERT, and AffineComponent::linear_params_.

Referenced by ModelCollapser::CollapseComponentsAffine(), and AffineComponent::InitFromConfig().

1186  {
1187  linear_params_.Resize(output_dim, input_dim);
1188  bias_params_.Resize(output_dim);
1189  KALDI_ASSERT(output_dim > 0 && input_dim > 0 && param_stddev >= 0.0);
1190  linear_params_.SetRandn(); // sets to random normally distributed noise.
1191  linear_params_.Scale(param_stddev);
1192  bias_params_.SetRandn();
1193  bias_params_.Scale(bias_stddev);
1194 }
CuMatrix< BaseFloat > linear_params_
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:185

◆ Init() [2/2]

void Init ( std::string  matrix_filename)
protected

Definition at line 1196 of file nnet-simple-component.cc.

References AffineComponent::bias_params_, KALDI_ASSERT, AffineComponent::linear_params_, CuMatrixBase< Real >::NumCols(), CuMatrixBase< Real >::NumRows(), CuMatrixBase< Real >::Range(), and kaldi::ReadKaldiObject().

1196  {
1197  CuMatrix<BaseFloat> mat;
1198  ReadKaldiObject(matrix_filename, &mat); // will abort on failure.
1199  KALDI_ASSERT(mat.NumCols() >= 2);
1200  int32 input_dim = mat.NumCols() - 1, output_dim = mat.NumRows();
1201  linear_params_.Resize(output_dim, input_dim);
1202  bias_params_.Resize(output_dim);
1203  linear_params_.CopyFromMat(mat.Range(0, output_dim, 0, input_dim));
1204  bias_params_.CopyColFromMat(mat, input_dim);
1205 }
kaldi::int32 int32
void ReadKaldiObject(const std::string &filename, Matrix< float > *m)
Definition: kaldi-io.cc:832
CuMatrix< BaseFloat > linear_params_
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:185

◆ InitFromConfig()

void InitFromConfig ( ConfigLine cfl)
virtual

Initialize, from a ConfigLine object.

Parameters
[in]cflA ConfigLine containing any parameters that are needed for initialization. For example: "dim=100 param-stddev=0.1"

Implements Component.

Reimplemented in NaturalGradientAffineComponent.

Definition at line 1207 of file nnet-simple-component.cc.

References ConfigLine::GetValue(), ConfigLine::HasUnusedValues(), AffineComponent::Init(), UpdatableComponent::InitLearningRatesFromConfig(), AffineComponent::InputDim(), KALDI_ASSERT, KALDI_ERR, AffineComponent::orthonormal_constraint_, AffineComponent::OutputDim(), ConfigLine::UnusedValues(), and ConfigLine::WholeLine().

1207  {
1208  bool ok = true;
1209  std::string matrix_filename;
1210  int32 input_dim = -1, output_dim = -1;
1212  if (cfl->GetValue("matrix", &matrix_filename)) {
1213  Init(matrix_filename);
1214  if (cfl->GetValue("input-dim", &input_dim))
1215  KALDI_ASSERT(input_dim == InputDim() &&
1216  "input-dim mismatch vs. matrix.");
1217  if (cfl->GetValue("output-dim", &output_dim))
1218  KALDI_ASSERT(output_dim == OutputDim() &&
1219  "output-dim mismatch vs. matrix.");
1220  } else {
1221  ok = ok && cfl->GetValue("input-dim", &input_dim);
1222  ok = ok && cfl->GetValue("output-dim", &output_dim);
1223  BaseFloat param_stddev = 1.0 / std::sqrt(input_dim),
1224  bias_stddev = 1.0;
1225  cfl->GetValue("param-stddev", &param_stddev);
1226  cfl->GetValue("bias-stddev", &bias_stddev);
1227  Init(input_dim, output_dim,
1228  param_stddev, bias_stddev);
1229  }
1230  cfl->GetValue("orthonormal-constraint", &orthonormal_constraint_);
1231 
1232  if (cfl->HasUnusedValues())
1233  KALDI_ERR << "Could not process these elements in initializer: "
1234  << cfl->UnusedValues();
1235  if (!ok)
1236  KALDI_ERR << "Bad initializer " << cfl->WholeLine();
1237 }
void InitLearningRatesFromConfig(ConfigLine *cfl)
kaldi::int32 int32
void Init(int32 input_dim, int32 output_dim, BaseFloat param_stddev, BaseFloat bias_stddev)
float BaseFloat
Definition: kaldi-types.h:29
virtual int32 InputDim() const
Returns input-dimension of this component.
virtual int32 OutputDim() const
Returns output-dimension of this component.
#define KALDI_ERR
Definition: kaldi-error.h:147
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:185

◆ InputDim()

◆ LinearParams() [1/2]

◆ LinearParams() [2/2]

CuMatrix<BaseFloat>& LinearParams ( )
inline

Definition at line 458 of file nnet-simple-component.h.

References PnormComponent::Init().

458 { return linear_params_; }
CuMatrix< BaseFloat > linear_params_

◆ NumParameters()

int32 NumParameters ( ) const
virtual

The following new virtual function returns the total dimension of the parameters in this class.

Reimplemented from UpdatableComponent.

Definition at line 1323 of file nnet-simple-component.cc.

References AffineComponent::InputDim(), and AffineComponent::OutputDim().

Referenced by AffineComponent::UnVectorize(), and AffineComponent::Vectorize().

1323  {
1324  return (InputDim() + 1) * OutputDim();
1325 }
virtual int32 InputDim() const
Returns input-dimension of this component.
virtual int32 OutputDim() const
Returns output-dimension of this component.

◆ operator=()

const AffineComponent& operator= ( const AffineComponent other)
protected

◆ OrthonormalConstraint()

BaseFloat OrthonormalConstraint ( ) const
inline

◆ OutputDim()

◆ PerturbParams()

void PerturbParams ( BaseFloat  stddev)
virtual

This function is to be used in testing.

It adds unit noise times "stddev" to the parameters of the component.

Implements UpdatableComponent.

Definition at line 1149 of file nnet-simple-component.cc.

References AffineComponent::bias_params_, AffineComponent::linear_params_, CuVectorBase< Real >::SetRandn(), and CuMatrixBase< Real >::SetRandn().

1149  {
1150  CuMatrix<BaseFloat> temp_linear_params(linear_params_);
1151  temp_linear_params.SetRandn();
1152  linear_params_.AddMat(stddev, temp_linear_params);
1153 
1154  CuVector<BaseFloat> temp_bias_params(bias_params_);
1155  temp_bias_params.SetRandn();
1156  bias_params_.AddVec(stddev, temp_bias_params);
1157 }
CuMatrix< BaseFloat > linear_params_

◆ Propagate()

void * Propagate ( const ComponentPrecomputedIndexes indexes,
const CuMatrixBase< BaseFloat > &  in,
CuMatrixBase< BaseFloat > *  out 
) const
virtual

Propagate function.

Parameters
[in]indexesA pointer to some information output by this class's PrecomputeIndexes function (will be NULL for simple components, i.e. those that don't do things like splicing).
[in]inThe input to this component. Num-columns == InputDim().
[out]outThe output of this component. Num-columns == OutputDim(). Note: output of this component will be added to the initial value of "out" if Properties()&kPropagateAdds != 0; otherwise the output will be set and the initial value ignored. Each Component chooses whether it is more convenient implementation-wise to add or set, and the calling code has to deal with it.
Returns
Normally returns NULL, but may return a non-NULL value for components which have the flag kUsesMemo set. This value will be passed into the corresponding Backprop routine.

Implements Component.

Definition at line 1242 of file nnet-simple-component.cc.

References CuMatrixBase< Real >::AddMatMat(), AffineComponent::bias_params_, CuMatrixBase< Real >::CopyRowsFromVec(), kaldi::kNoTrans, kaldi::kTrans, and AffineComponent::linear_params_.

1244  {
1245 
1246  // No need for asserts as they'll happen within the matrix operations.
1247  out->CopyRowsFromVec(bias_params_); // copies bias_params_ to each row
1248  // of *out.
1249  out->AddMatMat(1.0, in, kNoTrans, linear_params_, kTrans, 1.0);
1250  return NULL;
1251 }
CuMatrix< BaseFloat > linear_params_

◆ Properties()

◆ Read()

void Read ( std::istream &  is,
bool  binary 
)
virtual

Read function (used after we know the type of the Component); accepts input that is missing the token that describes the component type, in case it has already been consumed.

Implements Component.

Reimplemented in NaturalGradientAffineComponent.

Definition at line 1289 of file nnet-simple-component.cc.

References AffineComponent::bias_params_, kaldi::nnet3::ExpectToken(), UpdatableComponent::is_gradient_, AffineComponent::linear_params_, AffineComponent::orthonormal_constraint_, kaldi::PeekToken(), kaldi::ReadBasicType(), and UpdatableComponent::ReadUpdatableCommon().

1289  {
1290  ReadUpdatableCommon(is, binary); // read opening tag and learning rate.
1291  ExpectToken(is, binary, "<LinearParams>");
1292  linear_params_.Read(is, binary);
1293  ExpectToken(is, binary, "<BiasParams>");
1294  bias_params_.Read(is, binary);
1295  if (PeekToken(is, binary) == 'I') {
1296  // for back compatibility; we don't write this here any
1297  // more as it's written and read in Write/ReadUpdatableCommon
1298  ExpectToken(is, binary, "<IsGradient>");
1299  ReadBasicType(is, binary, &is_gradient_);
1300  }
1301  if (PeekToken(is, binary) == 'O') {
1302  ExpectToken(is, binary, "<OrthonormalConstraint>");
1303  ReadBasicType(is, binary, &orthonormal_constraint_);
1304  } else {
1306  }
1307  ExpectToken(is, binary, "</AffineComponent>");
1308 }
void ReadBasicType(std::istream &is, bool binary, T *t)
ReadBasicType is the name of the read function for bool, integer types, and floating-point types...
Definition: io-funcs-inl.h:55
static void ExpectToken(const std::string &token, const std::string &what_we_are_parsing, const std::string **next_token)
std::string ReadUpdatableCommon(std::istream &is, bool binary)
int PeekToken(std::istream &is, bool binary)
PeekToken will return the first character of the next token, or -1 if end of file.
Definition: io-funcs.cc:170
CuMatrix< BaseFloat > linear_params_
bool is_gradient_
True if this component is to be treated as a gradient rather than as parameters.

◆ Resize()

void Resize ( int32  input_dim,
int32  output_dim 
)
virtual

Definition at line 1111 of file nnet-simple-component.cc.

References KALDI_ASSERT.

1111  {
1112  KALDI_ASSERT(input_dim > 0 && output_dim > 0);
1113  bias_params_.Resize(output_dim);
1114  linear_params_.Resize(output_dim, input_dim);
1115 }
CuMatrix< BaseFloat > linear_params_
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:185

◆ Scale()

void Scale ( BaseFloat  scale)
virtual

This virtual function when called on – an UpdatableComponent scales the parameters by "scale" when called by an UpdatableComponent.

– a Nonlinear component (or another component that stores stats, like BatchNormComponent)– it relates to scaling activation stats, not parameters. Otherwise it will normally do nothing.

Reimplemented from Component.

Reimplemented in NaturalGradientAffineComponent.

Definition at line 1100 of file nnet-simple-component.cc.

Referenced by ModelCollapser::GetScaledComponentIndex().

1100  {
1101  if (scale == 0.0) {
1102  // If scale == 0.0 we call SetZero() which will get rid of NaN's and inf's.
1103  linear_params_.SetZero();
1104  bias_params_.SetZero();
1105  } else {
1106  linear_params_.Scale(scale);
1107  bias_params_.Scale(scale);
1108  }
1109 }
CuMatrix< BaseFloat > linear_params_

◆ SetParams()

void SetParams ( const CuVectorBase< BaseFloat > &  bias,
const CuMatrixBase< BaseFloat > &  linear 
)
virtual

◆ Type()

virtual std::string Type ( ) const
inlinevirtual

Returns a string such as "SigmoidComponent", describing the type of the object.

Implements Component.

Reimplemented in NaturalGradientAffineComponent.

Definition at line 417 of file nnet-simple-component.h.

417 { return "AffineComponent"; }

◆ UnVectorize()

void UnVectorize ( const VectorBase< BaseFloat > &  params)
virtual

Converts the parameters from vector form.

Reimplemented from UpdatableComponent.

Definition at line 1332 of file nnet-simple-component.cc.

References AffineComponent::bias_params_, VectorBase< Real >::Dim(), AffineComponent::InputDim(), KALDI_ASSERT, AffineComponent::linear_params_, AffineComponent::NumParameters(), AffineComponent::OutputDim(), and VectorBase< Real >::Range().

1332  {
1333  KALDI_ASSERT(params.Dim() == this->NumParameters());
1334  linear_params_.CopyRowsFromVec(params.Range(0, InputDim() * OutputDim()));
1335  bias_params_.CopyFromVec(params.Range(InputDim() * OutputDim(),
1336  OutputDim()));
1337 }
virtual int32 InputDim() const
Returns input-dimension of this component.
virtual int32 OutputDim() const
Returns output-dimension of this component.
CuMatrix< BaseFloat > linear_params_
virtual int32 NumParameters() const
The following new virtual function returns the total dimension of the parameters in this class...
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:185

◆ Update()

virtual void Update ( const std::string &  debug_info,
const CuMatrixBase< BaseFloat > &  in_value,
const CuMatrixBase< BaseFloat > &  out_deriv 
)
inlineprotectedvirtual

Reimplemented in NaturalGradientAffineComponent.

Definition at line 476 of file nnet-simple-component.h.

Referenced by AffineComponent::Backprop().

479  {
480  UpdateSimple(in_value, out_deriv);
481  }
virtual void UpdateSimple(const CuMatrixBase< BaseFloat > &in_value, const CuMatrixBase< BaseFloat > &out_deriv)

◆ UpdateSimple()

void UpdateSimple ( const CuMatrixBase< BaseFloat > &  in_value,
const CuMatrixBase< BaseFloat > &  out_deriv 
)
protectedvirtual

Definition at line 1253 of file nnet-simple-component.cc.

References AffineComponent::bias_params_, kaldi::kNoTrans, kaldi::kTrans, UpdatableComponent::learning_rate_, and AffineComponent::linear_params_.

Referenced by AffineComponent::Backprop().

1254  {
1255  bias_params_.AddRowSumMat(learning_rate_, out_deriv, 1.0);
1256  linear_params_.AddMatMat(learning_rate_, out_deriv, kTrans,
1257  in_value, kNoTrans, 1.0);
1258 }
BaseFloat learning_rate_
learning rate (typically 0.0..0.01)
CuMatrix< BaseFloat > linear_params_

◆ Vectorize()

void Vectorize ( VectorBase< BaseFloat > *  params) const
virtual

Turns the parameters into vector form.

We put the vector form on the CPU, because in the kinds of situations where we do this, we'll tend to use too much memory for the GPU.

Reimplemented from UpdatableComponent.

Definition at line 1326 of file nnet-simple-component.cc.

References AffineComponent::bias_params_, VectorBase< Real >::Dim(), AffineComponent::InputDim(), KALDI_ASSERT, AffineComponent::linear_params_, AffineComponent::NumParameters(), AffineComponent::OutputDim(), and VectorBase< Real >::Range().

1326  {
1327  KALDI_ASSERT(params->Dim() == this->NumParameters());
1328  params->Range(0, InputDim() * OutputDim()).CopyRowsFromMat(linear_params_);
1329  params->Range(InputDim() * OutputDim(),
1330  OutputDim()).CopyFromVec(bias_params_);
1331 }
virtual int32 InputDim() const
Returns input-dimension of this component.
virtual int32 OutputDim() const
Returns output-dimension of this component.
CuMatrix< BaseFloat > linear_params_
virtual int32 NumParameters() const
The following new virtual function returns the total dimension of the parameters in this class...
#define KALDI_ASSERT(cond)
Definition: kaldi-error.h:185

◆ Write()

void Write ( std::ostream &  os,
bool  binary 
) const
virtual

Write component to stream.

Implements Component.

Reimplemented in NaturalGradientAffineComponent.

Definition at line 1310 of file nnet-simple-component.cc.

References AffineComponent::bias_params_, AffineComponent::linear_params_, AffineComponent::orthonormal_constraint_, kaldi::WriteBasicType(), kaldi::WriteToken(), and UpdatableComponent::WriteUpdatableCommon().

1310  {
1311  WriteUpdatableCommon(os, binary); // Write opening tag and learning rate
1312  WriteToken(os, binary, "<LinearParams>");
1313  linear_params_.Write(os, binary);
1314  WriteToken(os, binary, "<BiasParams>");
1315  bias_params_.Write(os, binary);
1316  if (orthonormal_constraint_ != 0.0) {
1317  WriteToken(os, binary, "<OrthonormalConstraint>");
1319  }
1320  WriteToken(os, binary, "</AffineComponent>");
1321 }
void WriteToken(std::ostream &os, bool binary, const char *token)
The WriteToken functions are for writing nonempty sequences of non-space characters.
Definition: io-funcs.cc:134
CuMatrix< BaseFloat > linear_params_
void WriteUpdatableCommon(std::ostream &is, bool binary) const
void WriteBasicType(std::ostream &os, bool binary, T t)
WriteBasicType is the name of the write function for bool, integer types, and floating-point types...
Definition: io-funcs-inl.h:34

Friends And Related Function Documentation

◆ NaturalGradientAffineComponent

friend class NaturalGradientAffineComponent
friend

Definition at line 473 of file nnet-simple-component.h.

Member Data Documentation

◆ bias_params_

◆ linear_params_

◆ orthonormal_constraint_


The documentation for this class was generated from the following files: