20 #ifndef KALDI_NNET3_NNET_DIAGNOSTICS_H_    21 #define KALDI_NNET3_NNET_DIAGNOSTICS_H_    38                          tot_objective(0.0) { }
    71       debug_computation(false),
    73       compute_accuracy(true),
    74       store_component_stats(false),
    75       compute_per_dim_accuracy(false) { }
    81     opts->
Register(
"debug-computation", &debug_computation, 
"If true, turn on "    82                    "debug for the actual computation (very verbose!)");
    83     opts->
Register(
"compute-accuracy", &compute_accuracy, 
"If true, compute "    84                    "accuracy values as well as objective functions");
    85     opts->
Register(
"compute-per-dim-accuracy", &compute_per_dim_accuracy,
    86                    "If true, compute accuracy values per-dim");
    90     optimize_config.
Register(&optimization_opts);
    93     compiler_config.
Register(&compiler_opts);
    96     compute_config.
Register(&compute_opts);
   129   bool PrintTotalStats() 
const;
   138   double GetTotalObjective(
double *
tot_weight) 
const;
   142   const Nnet &GetDeriv() 
const;
   159   unordered_map<std::string, SimpleObjectiveInfo, StringHasher> 
objf_info_;
   215 #endif // KALDI_NNET3_NNET_DIAGNOSTICS_H_ NnetExample is the input data and corresponding label (or labels) for one or more frames of input...
 
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
void Register(OptionsItf *opts)
 
unordered_map< std::string, PerDimObjectiveInfo, StringHasher > accuracy_info_
 
This class is a wrapper that enables you to store a matrix in one of three forms: either as a Matrix<...
 
This class enables you to do the compilation and optimization in one call, and also ensures that if t...
 
NnetComputeProbOptions config_
 
void Register(OptionsItf *opts)
 
Vector< BaseFloat > tot_weight_vec
 
This class is for computing cross-entropy and accuracy values in a neural network, for diagnostics. 
 
bool store_component_stats
 
virtual void Register(const std::string &name, bool *ptr, const std::string &doc)=0
 
unordered_map< std::string, SimpleObjectiveInfo, StringHasher > objf_info_
 
The two main classes defined in this header are struct ComputationRequest, which basically defines a ...
 
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
 
void ComputeAccuracy(const GeneralMatrix &supervision, const CuMatrixBase< BaseFloat > &nnet_output, BaseFloat *tot_weight_out, BaseFloat *tot_accuracy_out, VectorBase< BaseFloat > *tot_weight_vec, VectorBase< BaseFloat > *tot_accuracy_vec)
This function computes the frame accuracy for this minibatch. 
 
Vector< BaseFloat > tot_objective_vec
 
void Register(OptionsItf *opts)
 
NnetOptimizeOptions optimize_config
 
int32 num_minibatches_processed_
 
bool compute_per_dim_accuracy
 
void Register(OptionsItf *opts)
 
NnetComputeOptions compute_config
 
Matrix for CUDA computing. 
 
CachingOptimizingCompiler compiler_
 
A class representing a vector. 
 
class NnetComputer is responsible for executing the computation described in the "computation" object...
 
CachingOptimizingCompilerOptions compiler_config
 
Provides a vector abstraction class.