44     bool need_backprop = 
false, store_stats = 
false;
    66 int main(
int argc, 
char *argv[]) {
    68     using namespace kaldi;
    71     typedef kaldi::int64 int64;
    74         "Read input nnet training examples, and compute the output for each one.\n"    75         "If --apply-exp=true, apply the Exp() function to the output before writing\n"    78         "Usage:  nnet3-compute-from-egs [options] <raw-nnet-in> <training-examples-in> <matrices-out>\n"    80         "nnet3-compute-from-egs --apply-exp=true 0.raw ark:1.egs ark:- | matrix-sum-rows ark:- ... \n"    81         "See also: nnet3-compute\n";
    83     bool binary_write = 
true,
    85     std::string use_gpu = 
"yes";
    86     std::string output_name = 
"output";
    89     po.
Register(
"binary", &binary_write, 
"Write output in binary mode");
    90     po.
Register(
"apply-exp", &apply_exp, 
"If true, apply exp function to "    92     po.
Register(
"output-name", &output_name, 
"Do computation for "    93                 "specified output-node");
    95                 "yes|no|optional|wait, only has effect if compiled with CUDA");
   105     CuDevice::Instantiate().SelectGpuId(use_gpu);
   108     std::string nnet_rxfilename = po.
GetArg(1),
   109         examples_rspecifier = po.
GetArg(2),
   110         matrix_wspecifier = po.
GetArg(3);
   122     for (; !example_reader.
Done(); example_reader.
Next(), num_egs++) {
   124       computer.
Compute(example_reader.
Value(), output_name, &output);
   128       matrix_writer.
Write(example_reader.
Key(), output);
   131     CuDevice::Instantiate().PrintProfile();
   133     KALDI_LOG << 
"Processed " << num_egs << 
" examples.";
   135   } 
catch(
const std::exception &e) {
   136     std::cerr << e.what() << 
'\n';
 NnetExample is the input data and corresponding label (or labels) for one or more frames of input...
 
This code computes Goodness of Pronunciation (GOP) and extracts phone-level pronunciation feature for...
 
void CopyToMat(MatrixBase< OtherReal > *dst, MatrixTransposeType trans=kNoTrans) const
 
CachingOptimizingCompiler compiler_
 
void PrintUsage(bool print_command_line=false)
Prints the usage documentation [provided in the constructor]. 
 
int32 GetVerboseLevel()
Get verbosity level, usually set via command line '–verbose=' switch. 
 
void Compute(const NnetExample &eg, const std::string &output_name, Matrix< BaseFloat > *output)
 
This class enables you to do the compilation and optimization in one call, and also ensures that if t...
 
A templated class for writing objects to an archive or script file; see The Table concept...
 
void Write(const std::string &key, const T &value) const
 
void Register(const std::string &name, bool *ptr, const std::string &doc)
 
void ReadKaldiObject(const std::string &filename, Matrix< float > *m)
 
The class ParseOptions is for parsing command-line options; see Parsing command-line options for more...
 
int main(int argc, char *argv[])
 
void AcceptInputs(const Nnet &nnet, const std::vector< NnetIo > &io)
This convenience function calls AcceptInput() in turn on all the inputs in the training example...
 
A templated class for reading objects sequentially from an archive or script file; see The Table conc...
 
int Read(int argc, const char *const *argv)
Parses the command line options and fills the ParseOptions-registered variables. 
 
std::string GetArg(int param) const
Returns one of the positional parameters; 1-based indexing for argc/argv compatibility. 
 
NnetComputerFromEg(const Nnet &nnet)
 
std::shared_ptr< const NnetComputation > Compile(const ComputationRequest &request)
Does the compilation and returns a const pointer to the result, which is owned by this class...
 
int NumArgs() const
Number of positional parameters (c.f. argc-1). 
 
Matrix for CUDA computing. 
 
MatrixIndexT NumCols() const
 
class NnetComputer is responsible for executing the computation described in the "computation" object...
 
#define KALDI_ASSERT(cond)
 
MatrixIndexT NumRows() const
Returns number of rows (or zero for empty matrix). 
 
void Resize(const MatrixIndexT r, const MatrixIndexT c, MatrixResizeType resize_type=kSetZero, MatrixStrideType stride_type=kDefaultStride)
Sets matrix to a specified size (zero is OK as long as both r and c are zero). 
 
MatrixIndexT NumRows() const
Dimensions. 
 
std::vector< NnetIo > io
"io" contains the input and output. 
 
void GetComputationRequest(const Nnet &nnet, const NnetExample &eg, bool need_model_derivative, bool store_component_stats, ComputationRequest *request)
This function takes a NnetExample (which should already have been frame-selected, if desired...