All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages

Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

[detail level 1234]

►Nfst | |

CArcIterator< ContextFst< A > > | |

CArcIterator< TrivialFactorWeightFst< A, F > > | |

CArcticWeightTpl | |

CBackoffDeterministicOnDemandFst | This class wraps a conventional Fst, representing a language model, in the interface for "BackoffDeterministicOnDemandFst" |

CCacheDeterministicOnDemandFst | |

►CCompactLatticeMinimizer | |

CEquivalenceSorter | |

CCompactLatticePusher | |

CCompactLatticeWeightCommonDivisorTpl | |

CCompactLatticeWeightTpl | |

CComposeDeterministicOnDemandFst | |

CContextFst | |

CContextFstImpl | |

CContextMatcher | |

CDeterministicOnDemandFst | Class DeterministicOnDemandFst is an "FST-like" base-class |

CDeterminizeLatticeOptions | |

CDeterminizeLatticePhonePrunedOptions | |

CDeterminizeLatticePrunedOptions | |

►CDeterminizerStar | |

CElement | |

►CEpsilonClosure | |

CEpsilonClosureInfo | |

CPairComparator | |

CSubsetEqual | |

CSubsetEqualStates | |

CSubsetKey | |

CTempArc | |

CDfsOrderVisitor | |

CIdentityFunction | |

►CLatticeDeterminizer | |

CElement | |

CPairComparator | |

CSubsetEqual | |

CSubsetEqualStates | |

CSubsetKey | |

CTempArc | |

►CLatticeDeterminizerPruned | |

CElement | |

COutputState | |

CPairComparator | |

CSubsetEqual | |

CSubsetEqualStates | |

CSubsetKey | |

CTask | |

CTaskCompare | |

CTempArc | |

►CLatticeStringRepository | |

CEntry | |

CEntryEqual | |

CEntryKey | |

CLatticeToStdMapper | Class LatticeToStdMapper maps a LatticeArc to a normal arc (StdArc) by adding the elements of the LatticeArc weight |

CLatticeWeightTpl | |

CLmExampleDeterministicOnDemandFst | This class is for didactic purposes, it does not really do anything |

CMapInputSymbolsMapper | |

CNaturalLess< CompactLatticeWeightTpl< LatticeWeightTpl< FloatType >, IntType > > | |

CNaturalLess< LatticeWeightTpl< FloatType > > | |

►CPruneSpecialClass | This class is used to implement the function PruneSpecial |

CTask | |

CPushSpecialClass | |

CRandFstOptions | |

CRemoveEpsLocalClass | |

CRemoveSomeInputSymbolsMapper | |

CReweightPlusDefault | |

CReweightPlusLogArc | |

CStateIterator< ContextFst< A > > | |

CStateIterator< TrivialFactorWeightFst< A, F > > | |

CStdToLatticeMapper | Class StdToLatticeMapper maps a normal arc (StdArc) to a LatticeArc by putting the StdArc weight as the first element of the LatticeWeight |

►CStringRepository | |

CVectorEqual | |

CVectorKey | |

CTableComposeCache | TableComposeCache lets us do multiple compositions while caching the same matcher |

CTableComposeOptions | |

CTableMatcher | |

CTableMatcherImpl | |

CTableMatcherOptions | TableMatcher is a matcher specialized for the case where the output side of the left FST always has either all-epsilons coming out of a state, or a majority of the symbol table |

CTestFunctor | |

CTrivialFactorWeightFst | FactorWeightFst takes as template parameter a FactorIterator as defined above |

►CTrivialFactorWeightFstImpl | |

CElement | |

CElementEqual | |

CElementKey | |

CTrivialFactorWeightOptions | |

CUnweightedNgramFst | The class UnweightedNgramFst is a DeterministicOnDemandFst whose states encode an n-gram history |

CVectorFstTplHolder | |

►Nkaldi | Relabels neural network egs with the read pdf-id alignments |

►Ndiscriminative | |

CDiscriminativeComputation | |

CDiscriminativeObjectiveInfo | |

CDiscriminativeOptions | |

CDiscriminativeSupervision | |

CDiscriminativeSupervisionOptions | |

►CDiscriminativeSupervisionSplitter | |

CLatticeInfo | |

CSplitDiscriminativeSupervisionOptions | |

►Nnnet1 | |

CAddShift | Adds shift to all the lines of the matrix (can be used for global mean normalization) |

CAffineTransform | |

CAveragePooling2DComponent | AveragePoolingComponent : The input/output matrices are split to submatrices with width 'pool_stride_' |

CAveragePoolingComponent | AveragePoolingComponent : The input/output matrices are split to submatrices with width 'pool_stride_' |

CBlockSoftmax | |

CBlstmProjected | |

►CComponent | Abstract class, building block of the network |

Ckey_value | A pair of type and marker, |

CConvolutional2DComponent | Convolutional2DComponent implements convolution over 2-axis (frequency and temporal) (i.e |

CConvolutionalComponent | ConvolutionalComponent implements convolution over single axis (i.e |

CCopyComponent | Rearrange the matrix columns according to the indices in copy_from_indices_ |

CDropout | |

CFramePoolingComponent | FramePoolingComponent : The input/output matrices are split to frames of width 'feature_dim_' |

CHiddenSoftmax | |

CKlHmm | |

CLengthNormComponent | Rescale the matrix-rows to have unit length (L2-norm) |

CLinearTransform | |

CLossItf | |

CLstmProjected | |

CMatrixBuffer | A buffer for caching (utterance-key, feature-matrix) pairs |

CMatrixBufferOptions | |

CMatrixRandomizer | Shuffles rows of a matrix according to the indices in the mask, |

CMaxPooling2DComponent | MaxPoolingComponent : The input/output matrices are split to submatrices with width 'pool_stride_' |

CMaxPoolingComponent | MaxPoolingComponent : The input/output matrices are split to submatrices with width 'pool_stride_' |

CMse | |

CMultiBasisComponent | |

CMultistreamComponent | Class MultistreamComponent is an extension of UpdatableComponent for recurrent networks, which are trained with parallel sequences |

CMultiTaskLoss | |

CNnet | |

CNnetDataRandomizerOptions | Configuration variables that affect how frame-level shuffling is done |

CNnetTrainOptions | |

CParallelComponent | |

CParametricRelu | |

CPdfPrior | |

CPdfPriorOptions | |

CRandomizerMask | Generates randomly ordered vector of indices, |

CRbm | |

CRbmBase | |

CRbmTrainOptions | |

CRecurrentComponent | Component with recurrent connections, 'tanh' non-linearity |

CRescale | Rescale the data column-wise by a vector (can be used for global variance normalization) |

CSentenceAveragingComponent | Deprecated!!!, keeping it as Katka Zmolikova used it in JSALT 2015 |

CSigmoid | |

CSimpleSentenceAveragingComponent | SimpleSentenceAveragingComponent does not have nested network, it is intended to be used inside of a <ParallelComponent> |

CSoftmax | |

CSplice | Splices the time context of the input features in N, out k*N, FrameOffset o_1,o_2,...,o_k FrameOffset example 11frames: -5 -4 -3 -2 -1 0 1 2 3 4 5 |

CStdVectorRandomizer | Randomizes elements of a vector according to a mask |

CTanh | |

CUpdatableComponent | Class UpdatableComponent is a Component which has trainable parameters, it contains SGD training hyper-parameters in NnetTrainOptions |

CVectorRandomizer | Randomizes elements of a vector according to a mask |

CXent | |

►Nnnet2 | |

CAdditiveNoiseComponent | This is a bit similar to dropout but adding (not multiplying) Gaussian noise with a given standard deviation |

CAffineComponent | |

CAffineComponentPreconditioned | |

CAffineComponentPreconditionedOnline | Keywords: natural gradient descent, NG-SGD, naturalgradient |

CAmNnet | |

CBlockAffineComponent | |

CBlockAffineComponentPreconditioned | |

CChunkInfo | ChunkInfo is a class whose purpose is to describe the structure of matrices holding features |

CComponent | Abstract class, basic element of the network, it is a box with defined inputs, outputs, and tranformation functions interface |

CConvolutional1dComponent | Convolutional1dComponent implements convolution over frequency axis |

CDctComponent | Discrete cosine transform |

CDecodableAmNnet | DecodableAmNnet is a decodable object that decodes with a neural net acoustic model of type AmNnet |

CDecodableAmNnetParallel | This version of DecodableAmNnet is intended for a version of the decoder that processes different utterances with multiple threads |

CDecodableNnet2Online | This Decodable object for class nnet2::AmNnet takes feature input from class OnlineFeatureInterface, unlike, say, class DecodableAmNnet which takes feature input from a matrix |

CDecodableNnet2OnlineOptions | |

►CDiscriminativeExampleSplitter | For each frame, judge: |

CFrameInfo | |

CDiscriminativeExamplesRepository | This struct stores neural net training examples to be used in multi-threaded training |

CDiscriminativeNnetExample | This struct is used to store the information we need for discriminative training (MMI or MPE) |

CDiscTrainParallelClass | |

CDoBackpropParallelClass | |

CDropoutComponent | This Component, if present, randomly zeroes half of the inputs and multiplies the other half by two |

CExamplesRepository | This class stores neural net training examples to be used in multi-threaded training |

CFastNnetCombiner | |

CFisherComputationClass | |

CFixedAffineComponent | FixedAffineComponent is an affine transform that is supplied at network initialization time and is not trainable |

CFixedBiasComponent | FixedBiasComponent applies a fixed per-element bias; it's similar to the AddShift component in the nnet1 setup (and only needed for nnet1 model conversion |

CFixedLinearComponent | FixedLinearComponent is a linear transform that is supplied at network initialization time and is not trainable |

CFixedScaleComponent | FixedScaleComponent applies a fixed per-element scale; it's similar to the Rescale component in the nnet1 setup (and only needed for nnet1 model conversion) |

CLimitRankClass | |

CLogSoftmaxComponent | |

CMaxoutComponent | |

CMaxpoolingComponent | MaxPoolingComponent : Maxpooling component was firstly used in ConvNet for selecting an representative activation in an area |

CNnet | |

CNnetCombineAconfig | |

CNnetCombineConfig | Configuration class that controls neural net combination, where we combine a number of neural nets, trying to find for each layer the optimal weighted combination of the different neural-net parameters |

CNnetCombineFastConfig | Configuration class that controls neural net combination, where we combine a number of neural nets, trying to find for each layer the optimal weighted combination of the different neural-net parameters |

CNnetComputer | |

CNnetDiscriminativeStats | |

CNnetDiscriminativeUpdateOptions | |

CNnetDiscriminativeUpdater | |

CNnetEnsembleTrainer | |

CNnetEnsembleTrainerConfig | |

CNnetExample | NnetExample is the input data and corresponding label (or labels) for one or more frames of input, used for standard cross-entropy training of neural nets (and possibly for other objective functions) |

CNnetExampleBackgroundReader | |

CNnetFixConfig | |

CNnetLimitRankOpts | |

CNnetLogprobTask | |

CNnetMixupConfig | |

CNnetOnlineComputer | |

CNnetRescaleConfig | |

CNnetRescaler | |

CNnetShrinkConfig | Configuration class that controls neural net "shrinkage" which is actually a scaling on the parameters of each of the updatable layers |

CNnetSimpleTrainerConfig | |

►CNnetStats | |

CStatsElement | |

CNnetStatsConfig | |

CNnetUpdater | |

CNnetWidenConfig | Configuration class that controls neural net "widening", which means increasing the dimension of the hidden layers of an already-trained neural net |

CNonlinearComponent | This kind of Component is a base-class for things like sigmoid and softmax |

CNormalizeComponent | |

COnlinePreconditioner | Keywords for search: natural gradient, naturalgradient, NG-SGD |

COnlinePreconditionerSimple | |

CPermuteComponent | PermuteComponent does a permutation of the dimensions (by default, a fixed random permutation, but it may be specified) |

CPnormComponent | |

CPowerComponent | Take the absoute values of an input vector to a power |

CRandomComponent | |

CRectifiedLinearComponent | |

CScaleComponent | |

CSigmoidComponent | |

CSoftHingeComponent | |

CSoftmaxComponent | |

CSpliceComponent | Splices a context window of frames together [over time] |

CSpliceMaxComponent | This is as SpliceComponent but outputs the max of any of the inputs (taking the max across time) |

CSplitDiscriminativeExampleConfig | Config structure for SplitExample, for splitting discriminative training examples |

CSplitExampleStats | This struct exists only for diagnostic purposes |

CSumGroupComponent | |

CTanhComponent | |

CUpdatableComponent | Class UpdatableComponent is a Component which has trainable parameters and contains some global parameters for stochastic gradient descent (learning rate, L2 regularization constant) |

►Nnnet3 | |

CAccess | |

CAffineComponent | |

CAmNnetSimple | |

CAnalyzer | This struct exists to set up various pieces of analysis; it helps avoid the repetition of code where we compute all these things in sequence |

CBackpropTruncationComponent | |

CBackpropTruncationComponentPrecomputedIndexes | |

CBinarySumDescriptor | BinarySumDescriptor can represent either A + B, or (A if defined, else B) |

CBlockAffineComponent | This class implements an affine transform using a block diagonal matrix e.g., one whose weight matrix is all zeros except for blocks on the diagonal |

CCachingOptimizingCompiler | This class enables you to do the compilation and optimization in one call, and also ensures that if the ComputationRequest is identical to the previous one, the compilation process is not repeated |

CChainObjectiveInfo | |

CCheckComputationOptions | |

CCindexHasher | |

CCindexSet | |

CClipGradientComponent | |

CCommandAttributes | |

CComparePair | |

►CCompiler | This class creates an initial version of the NnetComputation, without any optimization or sharing of matrices |

CStepInfo | |

CCompilerOptions | |

CComponent | Abstract base-class for neural-net components |

CComponentPrecomputedIndexes | |

CCompositeComponent | CompositeComponent is a component representing a sequence of [simple] components |

CComputationAnalysis | This class performs various kinds of specific analysis on top of what class Analyzer gives you immediately |

CComputationChecker | |

CComputationGraph | The first step in compilation is to turn the ComputationSpecification into a ComputationGraph, where for each Cindex we have a list of other Cindexes that it depends on |

CComputationGraphBuilder | An abstract representation of a set of Cindexes |

►CComputationRenumberer | |

CPointerCompare | |

CSubMatrixHasher | |

CComputationRequest | |

CComputationRequestHasher | |

CComputationRequestPtrEqual | |

CComputationVariables | This class relates the matrices and sub-matrices in the computation to imaginary "variables", such that we can think of the operations as operating on sets of individual variables, and we can then do analysis that lets us do optimization |

CConfigLine | This class is responsible for parsing input like hi-there xx=yyy a=b c empty= f-oo=Append(bar, sss) ba_z=123 bing='a b c' baz="a b c d='a b' e" and giving you access to the fields, in this case |

CConstantFunctionComponent | |

CConvolutionComponent | ConvolutionalComponent implements 2d-convolution |

CDecodableAmNnetSimple | |

CDecodableAmNnetSimpleParallel | |

CDecodableNnet3OnlineOptions | |

CDecodableNnet3SimpleOnline | This Decodable object for class nnet3::AmNnetSimple takes feature input from class OnlineFeatureInterface, unlike, say, class DecodableAmNnet which takes feature input from a matrix |

CDecodableNnetSimple | |

►CDerivativeTimeLimiter | |

CMatrixPruneInfo | |

CDescriptor | |

CDiscriminativeObjectiveFunctionInfo | |

CDistributeComponent | This Component takes a larger input-dim than output-dim, where the input-dim must be a multiple of the output-dim, and distributes different blocks of the input dimension to different 'x' values |

CDistributeComponentPrecomputedIndexes | |

CDropoutComponent | |

CElementwiseProductComponent | |

CFirstElementComparator | |

CFirstElementIsEqualComparator | |

CFixedAffineComponent | FixedAffineComponent is an affine transform that is supplied at network initialization time and is not trainable |

CFixedBiasComponent | FixedBiasComponent applies a fixed per-element bias; it's similar to the AddShift component in the nnet1 setup (and only needed for nnet1 model conversion |

CFixedScaleComponent | FixedScaleComponent applies a fixed per-element scale; it's similar to the Rescale component in the nnet1 setup (and only needed for nnet1 model conversion) |

CForwardingDescriptor | |

CGeneralDescriptor | This class is only used when parsing Descriptors |

CIndex | Struct Index is intended to represent the various indexes by which we number the rows of the matrices that the Components process: mainly 'n', the index of the member of the minibatch, 't', used for the frame index in speech recognition, and 'x', which is a catch-all extra index which we might use in convolutional setups or for other reasons |

CIndexHasher | |

CIndexLessNxt | |

CIndexSet | An abstract representation of a set of Indexes |

CIoSpecification | |

CLogSoftmaxComponent | |

CLstmNonlinearityComponent | |

CMatrixAccesses | |

CMaxpoolingComponent | |

CMiscComputationInfo | |

CModelUpdateConsolidator | This class is responsible for consolidating the model-update part of backprop commands, for components in (e.g.) recurrent networks that need to have many separate backprop commands, into more efficient single commands operating on consolidated data in larger matrices |

CNaturalGradientAffineComponent | Keywords: natural gradient descent, NG-SGD, naturalgradient |

CNaturalGradientPerElementScaleComponent | |

CNaturalGradientRepeatedAffineComponent | |

CNetworkNode | NetworkNode is used to represent, three types of thing: either an input of the network (which pretty much just states the dimension of the input vector); a Component (e.g |

CNnet | |

CNnetChainCombiner | |

CNnetChainComputeProb | This class is for computing objective-function values in a nnet3+chain setup, for diagnostics |

CNnetChainExample | NnetChainExample is like NnetExample, but specialized for CTC training |

CNnetChainSupervision | |

CNnetChainTrainer | This class is for single-threaded training of neural nets using the 'chain' model |

CNnetChainTrainingOptions | |

CNnetCombineConfig | Configuration class that controls neural net combination, where we combine a number of neural nets |

CNnetCombiner | |

►CNnetComputation | |

CCommand | |

CMatrixDebugInfo | |

CMatrixInfo | |

CSubMatrixInfo | |

CNnetComputeOptions | |

CNnetComputeProb | This class is for computing cross-entropy and accuracy values in a neural network, for diagnostics |

CNnetComputeProbOptions | |

►CNnetComputer | Class NnetComputer is responsible for executing the computation described in the "computation" object |

CCommandDebugInfo | |

CNnetComputerFromEg | |

CNnetDiscriminativeComputeObjf | This class is for computing objective-function values in a nnet3 discriminative training, for diagnostics |

CNnetDiscriminativeExample | NnetDiscriminativeExample is like NnetExample, but specialized for sequence training |

CNnetDiscriminativeOptions | |

CNnetDiscriminativeSupervision | |

CNnetDiscriminativeTrainer | This class is for single-threaded discriminative training of neural nets |

CNnetExample | NnetExample is the input data and corresponding label (or labels) for one or more frames of input, used for standard cross-entropy training of neural nets (and possibly for other objective functions) |

CNnetGenerationOptions | |

CNnetIo | |

CNnetLdaStatsAccumulator | |

CNnetOptimizeOptions | |

CNnetSimpleComputationOptions | |

CNnetTrainer | This class is for single-threaded training of neural nets using standard objective functions such as cross-entropy (implemented with logsoftmax nonlinearity and a linear objective function) and quadratic loss |

CNnetTrainerOptions | |

CNonlinearComponent | This kind of Component is a base-class for things like sigmoid, softmax and ReLU: nonlinearities that don't change the dimension |

CNoOpComponent | |

CNormalizeComponent | |

CObjectiveFunctionInfo | |

COffsetForwardingDescriptor | |

COnlineNaturalGradient | Keywords for search: natural gradient, naturalgradient, NG-SGD |

COnlineNaturalGradientSimple | |

COptionalSumDescriptor | This is the case of class SumDescriptor, in which we contain just one term, and that term is optional (an IfDefined() expression) |

CPairIsEqualComparator | |

CPerElementOffsetComponent | |

CPerElementScaleComponent | |

CPermuteComponent | PermuteComponent changes the order of the columns (i.e |

CPnormComponent | |

CRandomComponent | |

CRectifiedLinearComponent | |

CRepeatedAffineComponent | |

CReplaceIndexForwardingDescriptor | This ForwardingDescriptor modifies the indexes (n, t, x) by replacing one of them (normally t) with a constant value and keeping the rest |

CRoundingForwardingDescriptor | For use in clockwork RNNs and the like, this forwarding-descriptor rounds the time-index t down to the the closest t' <= t that is an exact multiple of t_modulus_ |

CSigmoidComponent | |

CSimpleForwardingDescriptor | |

CSimpleObjectiveInfo | |

CSimpleSumDescriptor | |

CSoftmaxComponent | |

CStatisticsExtractionComponent | |

CStatisticsExtractionComponentPrecomputedIndexes | |

CStatisticsPoolingComponent | |

CStatisticsPoolingComponentPrecomputedIndexes | |

CSumDescriptor | This is an abstract base-class |

CSumGroupComponent | SumGroupComponent is used to sum up groups of posteriors |

CSumReduceComponent | This component is a fixed (non-trainable) nonlinearity that sums its inputs to produce outputs |

CSwitchingForwardingDescriptor | |

CTanhComponent | |

CTarjanNode | |

CUpdatableComponent | Class UpdatableComponent is a Component which has trainable parameters; it extends the interface of Component |

CVariableMergingOptimizer | This class is responsible for merging matrices, although you probably want to access it via the the function VariableMergingOptimization() |

►Nsparse_vector_utils | |

CCompareFirst | |

CAccumAmDiagGmm | |

CAccumDiagGmm | |

CAccumFullGmm | Class for computing the maximum-likelihood estimates of the parameters of a Gaussian mixture model |

CAccumulateMultiThreadedClass | |

CAccumulateTreeStatsInfo | |

CAccumulateTreeStatsOptions | |

CAffineXformStats | |

CAlignConfig | |

CAmDiagGmm | |

CAmSgmm2 | Class for definition of the subspace Gmm acoustic model |

CArbitraryResample | Class ArbitraryResample allows you to resample a signal (assumed zero outside the sample region, not periodic) at arbitrary specified time values, which don't have to be linearly spaced |

CArcPosteriorComputer | |

CArpaFileParser | ArpaFileParser is an abstract base class for ARPA LM file conversion |

CArpaLine | |

CArpaLmCompiler | |

CArpaLmCompilerImpl | |

CArpaLmCompilerImplInterface | |

CArpaParseOptions | Options that control ArpaFileParser |

CBarrier | The Barrier class A barrier causes a group of threads to wait until all the threads reach the "barrier" |

Cbasic_filebuf | |

Cbasic_pipebuf | |

CBasicHolder | BasicHolder is valid for float, double, bool, and integer types |

CBasicPairVectorHolder | BasicPairVectorHolder is a Holder for a vector of pairs of a basic type, e.g |

CBasicVectorHolder | A Holder for a vector of basic types, e.g |

CBasicVectorVectorHolder | BasicVectorVectorHolder is a Holder for a vector of vector of a basic type, e.g |

CBasisFmllrAccus | Stats for fMLLR subspace estimation |

CBasisFmllrEstimate | Estimation functions for basis fMLLR |

CBasisFmllrOptions | |

►CBiglmFasterDecoder | This is as FasterDecoder, but does online composition between HCLG and the "difference language model", which is a deterministic FST that represents the difference between the language model you want and the language model you compiled HCLG with |

CToken | |

CBiglmFasterDecoderOptions | |

CBottomUpClusterer | |

CClatRescoreTuple | |

CClusterable | |

CClusterKMeansOptions | |

CCompactLatticeHolder | |

CCompareFirstMemberOfPair | Comparator object for pairs that compares only the first pair |

CComparePosteriorByPdfs | |

CCompareReverseSecond | |

CCompartmentalizedBottomUpClusterer | |

CCompBotClustElem | |

CCompressedAffineXformStats | |

►CCompressedMatrix | This class does lossy compression of a matrix |

CGlobalHeader | |

CPerColHeader | |

CComputeNormalizersClass | |

CConstantEventMap | |

CConstArpaLm | |

►CConstArpaLmBuilder | |

CWordsAndLmStatePairLessThan | |

CConstArpaLmDeterministicFst | This class wraps a ConstArpaLm format language model with the interface defined in DeterministicOnDemandFst |

CConstIntegerSet | |

CContextDependency | |

CContextDependencyInterface | Context-dep-itf.h provides a link between the tree-building code in ../tree/, and the FST code in ../fstext/ (particularly, ../fstext/context-dep.h) |

CCountStats | |

CCovarianceStats | |

CCuArray | Std::vector equivalent for CUDA computing |

►CCuBlockMatrix | The class CuBlockMatrix holds a vector of objects of type CuMatrix, say, M_1, M_2, |

CBlockMatrixData | |

CCuMatrix | This class represents a matrix that's stored on the GPU if we have one, and in memory if not |

CCuMatrixBase | Matrix for CUDA computing |

CCuPackedMatrix | Matrix for CUDA computing |

CCuRand | |

CCuSparseMatrix | |

CCuSpMatrix | |

CCuSubMatrix | This class is used for a piece of a CuMatrix |

CCuSubVector | |

CCuTpMatrix | |

CCuValue | The following class is used to simulate non-const references to Real, e.g |

CCuVector | |

CCuVectorBase | Vector for CUDA computing |

CDecisionTreeSplitter | |

CDecodableAmDiagGmm | |

CDecodableAmDiagGmmRegtreeFmllr | |

CDecodableAmDiagGmmRegtreeMllr | |

CDecodableAmDiagGmmScaled | |

►CDecodableAmDiagGmmUnmapped | DecodableAmDiagGmmUnmapped is a decodable object that takes indices that correspond to pdf-id's plus one |

CLikelihoodCacheRecord | Defines a cache record for a state |

CDecodableAmSgmm2 | |

CDecodableAmSgmm2Scaled | |

CDecodableInterface | DecodableInterface provides a link between the (acoustic-modeling and feature-processing) code and the decoder |

CDecodableMapped | |

CDecodableMatrixMappedOffset | This decodable class returns log-likes stored in a matrix; it supports repeatedly writing to the matrix and setting a time-offset representing the frame-index of the first row of the matrix |

CDecodableMatrixScaled | |

CDecodableMatrixScaledMapped | |

CDecodableSum | |

CDecodableSumScaled | |

CDecodeUtteranceLatticeFasterClass | This class basically does the same job as the function DecodeUtteranceLatticeFaster, but in a way that allows us to build a multi-threaded command line program more easily, using code in ../thread/kaldi-task-sequence.h |

CDeltaFeatures | |

CDeltaFeaturesOptions | |

CDeterminizeLatticeTask | |

CDiagGmm | Definition for Gaussian Mixture Model with diagonal covariances |

CDiagGmmNormal | Definition for Gaussian Mixture Model with diagonal covariances in normal mode: where the parameters are stored as means and variances (instead of the exponential form that the DiagGmm class is stored as) |

CDummyOptions | |

CEbwAmSgmm2Options | This header implements a form of Extended Baum-Welch training for SGMMs |

CEbwAmSgmm2Updater | |

CEbwOptions | |

CEbwUpdatePhoneVectorsClass | |

CEbwWeightOptions | |

CEigenvalueDecomposition | |

Cerror_stats | |

CEventMap | A class that is capable of representing a generic mapping from EventType (which is a vector of (key, value) pairs) to EventAnswerType which is just an integer |

CEventMapVectorEqual | |

CEventMapVectorHash | |

CExampleClass | |

CExampleFeatureComputer | This class is only added for documentation, it is not intended to ever be used |

CExampleFeatureComputerOptions | This class is only added for documentation, it is not intended to ever be used |

►CFasterDecoder | |

CToken | |

CFasterDecoderOptions | |

CFbankComputer | Class for computing mel-filterbank features; see Computing MFCC features for more information |

CFbankOptions | FbankOptions contains basic options for computing filterbank features |

CFeatureTransformEstimate | Class for computing a feature transform used for preconditioning of the training data in neural-networks |

CFeatureTransformEstimateMulti | |

CFeatureTransformEstimateOptions | |

CFeatureWindowFunction | |

CFileInputImpl | |

CFileOutputImpl | |

►CFmllrDiagGmmAccs | This does not work with multiple feature transforms |

CSingleFrameStats | |

CFmllrOptions | |

►CFmllrRawAccs | |

CSingleFrameStats | |

CFmllrRawOptions | |

CFmllrSgmm2Accs | Class for computing the accumulators needed for the maximum-likelihood estimate of FMLLR transforms for a subspace GMM acoustic model |

CFmpe | |

CFmpeOptions | |

CFmpeStats | |

CFmpeUpdateOptions | |

CFrameExtractionOptions | |

CFullGmm | Definition for Gaussian Mixture Model with full covariances |

CFullGmmNormal | Definition for Gaussian Mixture Model with full covariances in normal mode: where the parameters are stored as means and variances (instead of the exponential form that the FullGmm class is stored as) |

CGaussClusterable | GaussClusterable wraps Gaussian statistics in a form accessible to generic clustering algorithms |

CGaussPostHolder | |

CGeneralMatrix | This class is a wrapper that enables you to store a matrix in one of three forms: either as a Matrix<BaseFloat>, or a CompressedMatrix, or a SparseMatrix<BaseFloat> |

CGenericHolder | GenericHolder serves to document the requirements of the Holder interface; it's not intended to be used |

CGpsrConfig | This is an implementation of the GPSR algorithm |

►CHashList | |

CElem | |

CHashBucket | |

CHldaAccsDiagGmm | This class stores the compact form of the HLDA statistics, given a diagonal GMM |

CHmmCacheHash | |

►CHmmTopology | A class for storing topology information for phones |

CHmmState | A structure defined inside HmmTopology to represent a HMM state |

CHtkHeader | A structure containing the HTK header |

CHtkMatrixHolder | |

CHTransducerConfig | Configuration class for the GetHTransducer() function; see The HTransducerConfig configuration class for context |

CInput | |

CInputImplBase | |

CInt32AndFloat | |

CInt32IsZero | |

CIvectorEstimationOptions | |

CIvectorExtractor | |

CIvectorExtractorComputeDerivedVarsClass | |

CIvectorExtractorEstimationOptions | Options for training the IvectorExtractor, e.g. variance flooring |

CIvectorExtractorOptions | |

CIvectorExtractorStats | IvectorExtractorStats is a class used to update the parameters of the ivector extractor |

CIvectorExtractorStatsOptions | Options for IvectorExtractorStats, which is used to update the parameters of IvectorExtractor |

CIvectorExtractorUpdateProjectionClass | |

CIvectorExtractorUpdateWeightClass | |

CIvectorExtractorUtteranceStats | These are the stats for a particular utterance, i.e |

CIvectorExtractTask | |

CIvectorTask | |

CKaldiObjectHolder | KaldiObjectHolder works for Kaldi objects that have the "standard" Read and Write functions, and a copy constructor |

CKaldiRnnlmWrapper | |

CKaldiRnnlmWrapperOpts | |

CLatticeArcRecord | This is used in CompactLatticeLimitDepth |

►CLatticeBiglmFasterDecoder | This is as LatticeFasterDecoder, but does online composition between HCLG and the "difference language model", which is a deterministic FST that represents the difference between the language model you want and the language model you compiled HCLG with |

CForwardLink | |

CToken | |

CTokenList | |

►CLatticeFasterDecoder | A bit more optimized version of the lattice decoder |

CForwardLink | |

CToken | |

CTokenList | |

CLatticeFasterDecoderConfig | |

►CLatticeFasterOnlineDecoder | LatticeFasterOnlineDecoder is as LatticeFasterDecoder but also supports an efficient way to get the best path (see the function BestPathEnd()), which is useful in endpointing |

CBestPathIterator | |

CForwardLink | |

CToken | |

CTokenList | |

CLatticeHolder | |

►CLatticeLexiconWordAligner | |

CComputationState | |

CTuple | |

CTupleEqual | |

CTupleHash | |

►CLatticePhoneAligner | |

CComputationState | |

CTuple | |

CTupleEqual | |

CTupleHash | |

CLatticeReader | LatticeReader provides (static) functions for reading both Lattice and CompactLattice, in text form |

►CLatticeSimpleDecoder | Simplest possible decoder, included largely for didactic purposes and as a means to debug more highly optimized decoders |

CForwardLink | |

CToken | |

CTokenList | |

CLatticeSimpleDecoderConfig | |

►CLatticeWordAligner | |

CComputationState | |

CTuple | |

CTupleEqual | |

CTupleHash | |

CLbfgsOptions | This is an implementation of L-BFGS |

CLdaEstimate | Class for computing linear discriminant analysis (LDA) transform |

CLdaEstimateOptions | |

CLinearCgdOptions | |

CLinearResample | LinearResample is a special case of ArbitraryResample, where we want to resample a signal at linearly spaced intervals (this means we want to upsample or downsample the signal) |

CLinearVtln | |

►CLmState | |

CChildrenVectorLessThan | |

CChildType | |

CLogisticRegression | |

CLogisticRegressionConfig | |

CLogMessageEnvelope | Log message severity and source location info |

CMapDiagGmmOptions | Configuration variables for Maximum A Posteriori (MAP) update |

CMapTransitionUpdateConfig | |

CMatrix | A class for storing matrices |

CMatrixBase | Base class which provides matrix operations not involving resizing or allocation |

CMatrixExponential | |

CMelBanks | |

CMelBanksOptions | |

CMessageLogger | |

CMfccComputer | |

CMfccOptions | MfccOptions contains basic options for computing MFCC features |

►CMinimumBayesRisk | The implementation of the Minimum Bayes Risk decoding method described in "Minimum Bayes Risk decoding and system combination based on a recursion for edit distance", Haihua Xu, Daniel Povey, Lidia Mangu and Jie Zhu, Computer Speech and Language, 2011 This is a slightly more principled way to do Minimum Bayes Risk (MBR) decoding than the standard "Confusion Network" method |

CArc | |

CGammaCompare | |

CMleAmSgmm2Accs | Class for the accumulators associated with the phonetic-subspace model parameters |

CMleAmSgmm2Options | Configuration variables needed in the SGMM estimation process |

CMleAmSgmm2Updater | |

CMleDiagGmmOptions | Configuration variables like variance floor, minimum occupancy, etc |

CMleFullGmmOptions | Configuration variables like variance floor, minimum occupancy, etc |

CMleSgmm2SpeakerAccs | Class for the accumulators required to update the speaker vectors v_s |

CMleTransitionUpdateConfig | |

CMlltAccs | A class for estimating Maximum Likelihood Linear Transform, also known as global Semi-tied Covariance (STC), for GMMs |

CMultiThreadable | |

CMultiThreader | |

CMutex | This class encapsulates mutex to ensure exclusive access to some critical section which manipulates shared resources |

CMyTaskClass | |

CMyThreadClass | |

►CNBestDecoder | Caution: this decoder was written essentially as testing code for lattice-faster-decoder, and is not very useful; it would be better to pipe the lattices from lattice-faster-decoder into lattice-to-nbest if you want an n-best list |

►CTokenStore | |

CSeqToken | |

CToken | |

CNBestDecoderOptions | |

CNccfInfo | |

CNGram | A parsed n-gram from ARPA LM file |

COfflineFeatureTpl | This templated class is intended for offline feature extraction, i.e |

COffsetFileInputImpl | |

COnlineAppendFeature | This online-feature class implements combination of two feature streams (such as pitch, plp) into one stream |

COnlineBaseFeature | Add a virtual class for "source" features such as MFCC or PLP or pitch features |

COnlineCacheFeature | This feature type can be used to cache its input, to avoid repetition of computation in a multi-pass decoding context |

COnlineCmvn | This class does an online version of the cepstral mean and [optionally] variance, but note that this is not equivalent to the offline version |

COnlineCmvnOptions | |

COnlineCmvnState | Struct OnlineCmvnState stores the state of CMVN adaptation between utterances (but not the state of the computation within an utterance) |

COnlineDeltaFeature | |

COnlineFeatureInterface | OnlineFeatureInterface is an interface for online feature processing (it is also usable in the offline setting, but currently we're not using it for that) |

COnlineGenericBaseFeature | This is a templated class for online feature extraction; it's templated on a class like MfccComputer or PlpComputer that does the basic feature extraction |

COnlineIvectorEstimationStats | This class helps us to efficiently estimate iVectors in situations where the data is coming in frame by frame |

COnlineMatrixFeature | This class takes a Matrix<BaseFloat> and wraps it as an OnlineFeatureInterface: this can be useful where some earlier stage of feature processing has been done offline but you want to use part of the online pipeline |

COnlinePitchFeature | |

COnlinePitchFeatureImpl | |

►COnlineProcessPitch | This online-feature class implements post processing of pitch features |

CNormalizationStats | |

COnlineSpliceFrames | |

COnlineSpliceOptions | |

COnlineTransform | This online-feature class implements any affine or linear transform |

COptimizableInterface | OptimizableInterface provides a virtual class for optimizable objects |

COptimizeLbfgs | |

COptionsItf | |

COtherReal | This class provides a way for switching between double and float types |

COtherReal< double > | A specialized class for switching from double to float |

COtherReal< float > | A specialized class for switching from float to double |

COutput | |

COutputImplBase | |

CPackedMatrix | Packed matrix: base class for triangular and symmetric matrices |

CPairHasher | A hashing function-object for pairs of ints |

►CParseOptions | The class ParseOptions is for parsing command-line options; see Parsing command-line options for more documentation |

CDocInfo | Structure for options' documentation |

CPhoneAlignLatticeOptions | |

CPipeInputImpl | |

CPipeOutputImpl | |

CPitchExtractionOptions | |

►CPitchFrameInfo | |

CStateInfo | |

CPitchInterpolator | |

CPitchInterpolatorOptions | |

CPitchInterpolatorStats | |

CPlda | |

CPldaConfig | |

CPldaEstimationConfig | |

CPldaEstimator | |

►CPldaStats | |

CClassInfo | |

CPldaUnsupervisedAdaptor | This class takes unlabeled iVectors from the domain of interest and uses their mean and variance to adapt your PLDA matrices to a new domain |

CPldaUnsupervisedAdaptorConfig | |

CPlpComputer | This is the new-style interface to the PLP computation |

CPlpOptions | PlpOptions contains basic options for computing PLP features |

CPosteriorHolder | |

CProcessPitchOptions | |

CQuestions | This class defines, for each EventKeyType, a set of initial questions that it tries and also a number of iterations for which to refine the questions to increase likelihood |

CQuestionsForKey | QuestionsForKey is a class used to define the questions for a key, and also options that allow us to refine the question during tree-building (i.e |

CRandomAccessTableReader | Allows random access to a collection of objects in an archive or script file; see The Table concept |

CRandomAccessTableReaderArchiveImplBase | |

CRandomAccessTableReaderDSortedArchiveImpl | |

CRandomAccessTableReaderImplBase | |

CRandomAccessTableReaderMapped | This class is for when you are reading something in random access, but it may actually be stored per-speaker (or something similar) but the keys you're using are per utterance |

CRandomAccessTableReaderScriptImpl | |

►CRandomAccessTableReaderSortedArchiveImpl | |

CPairCompare | |

CRandomAccessTableReaderUnsortedArchiveImpl | |

CRandomState | |

►CRefineClusterer | |

Cpoint_info | |

CRefineClustersOptions | |

CRegressionTree | A regression tree is a clustering of Gaussian densities in an acoustic model, such that the group of Gaussians at each node of the tree are transformed by the same transform |

CRegtreeFmllrDiagGmm | An FMLLR (feature-space MLLR) transformation, also called CMLLR (constrained MLLR) is an affine transformation of the feature vectors |

CRegtreeFmllrDiagGmmAccs | Class for computing the accumulators needed for the maximum-likelihood estimate of FMLLR transforms for an acoustic model that uses diagonal Gaussian mixture models as emission densities |

CRegtreeFmllrOptions | Configuration variables for FMLLR transforms |

CRegtreeMllrDiagGmm | An MLLR mean transformation is an affine transformation of Gaussian means |

CRegtreeMllrDiagGmmAccs | Class for computing the maximum-likelihood estimates of the parameters of an acoustic model that uses diagonal Gaussian mixture models as emission densities |

CRegtreeMllrOptions | Configuration variables for FMLLR transforms |

CRnnlmDeterministicFst | |

CRspecifierOptions | |

CScalarClusterable | ScalarClusterable clusters scalars with x^2 loss |

CSemaphore | |

CSequentialTableReader | A templated class for reading objects sequentially from an archive or script file; see The Table concept |

CSequentialTableReaderArchiveImpl | |

CSequentialTableReaderBackgroundImpl | |

CSequentialTableReaderImplBase | |

CSequentialTableReaderScriptImpl | |

CSgmm2FmllrConfig | Configuration variables needed in the estimation of FMLLR for SGMMs |

CSgmm2FmllrGlobalParams | Global adaptation parameters |

CSgmm2GauPost | Indexed by time |

CSgmm2GauPostElement | This is the entry for a single time |

CSgmm2GselectConfig | |

►CSgmm2LikelihoodCache | Sgmm2LikelihoodCache caches SGMM likelihoods at two levels: the final pdf likelihoods, and the sub-state level likelihoods, which means that with the SCTM system we can avoid redundant computation |

CPdfCacheElement | |

CSubstateCacheElement | |

CSgmm2PerFrameDerivedVars | Holds the per-frame precomputed quantities x(t), x_{i}(t), z_{i}(t), and n_{i}(t) (cf |

CSgmm2PerSpkDerivedVars | |

CSgmm2Project | |

CSgmm2SplitSubstatesConfig | |

CShiftedDeltaFeatures | |

CShiftedDeltaFeaturesOptions | |

►CSimpleDecoder | Simplest possible decoder, included largely for didactic purposes and as a means to debug more highly optimized decoders |

CToken | |

►CSimpleOptions | The class SimpleOptions is an implementation of OptionsItf that allows setting and getting option values programmatically, i.e., via getter and setter methods |

COptionInfo | |

CSlidingWindowCmnOptions | |

CSolverOptions | This class describes the options for maximizing various quadratic objective functions |

CSparseMatrix | |

CSparseVector | |

CSpectrogramComputer | Class for computing spectrogram features |

CSpectrogramOptions | SpectrogramOptions contains basic options for computing spectrogram features |

CSphinxMatrixHolder | A class for reading/writing Sphinx format matrices |

CSplitEventMap | |

CSplitRadixComplexFft | |

CSplitRadixRealFft | |

CSpMatrix | Packed symetric matrix class |

CStandardInputImpl | |

CStandardOutputImpl | |

CStringHasher | A hashing function object for strings |

CSubMatrix | Sub-matrix representation |

CSubVector | Represents a non-allocating general vector which can be defined as a sub-vector of higher-level vector [or as the row of a matrix] |

CTableEventMap | |

CTableWriter | A templated class for writing objects to an archive or script file; see The Table concept |

CTableWriterArchiveImpl | |

CTableWriterBothImpl | |

CTableWriterImplBase | |

CTableWriterScriptImpl | |

►CTaskSequencer | |

CRunTaskArgsList | |

CTaskSequencerConfig | In kaldi-thread.h, the class MultiThreader, and the function RunMultiThreaded, provided a mechanism to run a specified number of jobs simultaneously, in parellel, and wait for them all to finish |

CTidToTstateMapper | |

CTimer | |

CTokenHolder | |

CTokenVectorHolder | |

CTpMatrix | Packed symetric matrix class |

CTrainingGraphCompiler | |

CTrainingGraphCompilerOptions | |

►CTransitionModel | |

CTuple | |

►CTreeClusterer | |

CNode | |

CTreeClusterOptions | |

CTreeRenderer | |

CUbmClusteringOptions | |

CUpdatePhoneVectorsClass | |

CUpdateWClass | |

CVadEnergyOptions | |

CVector | A class representing a vector |

CVectorBase | Provides a vector abstraction class |

CVectorClusterable | VectorClusterable wraps vectors in a form accessible to generic clustering algorithms |

CVectorFstToKwsLexicographicFstMapper | |

CVectorHasher | A hashing function-object for vectors |

CWaveData | This class's purpose is to read in Wave files |

CWaveHolder | |

CWaveInfoHolder | |

CWordAlignedLatticeTester | |

CWordAlignLatticeLexiconInfo | This class extracts some information from the lexicon and stores it in a suitable form for the word-alignment code to use |

CWordAlignLatticeLexiconOpts | |

CWordBoundaryInfo | |

CWordBoundaryInfoNewOpts | |

CWordBoundaryInfoOpts | |

CWspecifierOptions | |

►Nrnnlm | |

CCRnnLM | |

Cneuron | |

Csynapse | |

Cvocab_word | |

CCacheArcIterator | |

CCacheImpl | |

CCacheOptions | |

CCacheStateIterator | |

CCuBlockMatrixData_ | This structure is used in cu-block-matrix.h to store information about a block-diagonal matrix |

CDecodeInfo | |

CEbwAmSgmmUpdater | Contains the functions needed to update the SGMM parameters |

CFloatWeightTpl | |

CFst | |

CImplToFst | |

CInt32Pair | |

CKaldiCompileTimeAssert | |

CKaldiCompileTimeAssert< true > | |

CkMarkerMap | |

CMatrixDim_ | Structure containing size of the matrix plus stride |

CMatrixElement | |

CMleAmSgmmUpdater | Contains the functions needed to update the SGMM parameters |

CTestFunction |